(a+b)x+(a-b)y=2ab
(a+b)x-(a-b)y= ab
Can you solve this , class 10 chapter no.3
Answers
Step-by-step explanation:
(a+b)x+(a-b)y=2ab
ax+bx+ay-by=2ab. (1)
(a+b)x+(a-b)y=ab
ax+bx-ay+by=ab. (2)
add eqs.(1)&(2)
2(a+b)x=3ab
x=3ab/2(a+b)
substract eq.(2) from eq.(1) we get
2ay-2by=ab
2(a-b)y=ab
y=ab/2(a-b)
Answer:
x = [ 3ab ] / [ 2(a + b) ]
y = [ ab ] / [ 2(a - b) ]
Step-by-step explanation:
Given :
1st equation : (a + b)x + (a - b)y = 2ab
2nd equation : (a + b)x - (a - b)y = ab
_______________________________
First, add both the equations.
→ [ (a + b)x + (a - b)y ] + [ (a + b)x - (a - b)y ] = 2ab + ab
- Opening the brackets.
→ (a + b)x + (a - b)y + (a + b)x - (a - b)y = 3ab
- Writing the common terms together.
→ (a + b)x + (a + b)x + (a - b)y - (a - b)y = 3ab
- Cancelling the common terms.
→ (a + b)x + (a + b)x = 3ab
→ 2(a + b)x = 3ab
- Transposing the terms.
→ x = [ 3ab ] / [ 2(a + b) ]
_______________________________
Second, subtract both the equations.
→ [ (a + b)x + (a - b)y ] - [ (a + b)x - (a - b)y ] = 2ab - ab
- Opening the brackets.
→ (a + b)x + (a - b)y - (a + b)x + (a - b)y = ab
- Writing the common terms together.
→ (a + b)x - (a + b)x + (a - b)y + (a - b)y = ab
- Cancelling the common terms.
→ (a - b)y + (a - b)y = ab
→ 2(a - b)y = ab
- Transposing the terms.
→ y = [ ab ] / [ 2(a - b) ]