Math, asked by raisahabib55, 9 months ago

(-a) b2 - cd2 - 3b (-c)?, when a = 5, b = -7, c = 4, d = -3​

Answers

Answered by mankaovi1025
0

Answer:

-365

Step-by-step explanation:

=(-5)*(-7*-7)-[4*(-3*-3)]-3(-7)*(-4)

=(-5)*49-36+21(-4)

=(-245)-36-84

=(-365) Ans.

Answered by pinquancaro
0

(-a) b^2 - cd^2 - 3b (-c)=-365

Step-by-step explanation:

Given : Expression (-a) b^2 - cd^2 - 3b (-c)

To find : The value of expression when a = 5, b = -7, c = 4, d = -3​ ?

Solution :

Expression (-a) b^2 - cd^2 - 3b (-c)

Substitute the value in the expression, a = 5, b = -7, c = 4, d = -3

(-a) b^2 - cd^2 - 3b (-c)=(-5) (-7)^2 - (4)(-3)^2 - 3(-7) (-4)

(-a) b^2 - cd^2 - 3b (-c)=(-5) (49) - (4)(9) - 3(28)

(-a) b^2 - cd^2 - 3b (-c)=-245 -36- 84

(-a) b^2 - cd^2 - 3b (-c)=-365

Therefore, (-a) b^2 - cd^2 - 3b (-c)=-365.

#Learn more

If (4/5)A = 3B = (2/3)C, then what is A : B : C?

https://brainly.in/question/10825298

Similar questions