A bag contains 30 white balls and 10 red balls. 16 balls are drawn one by one randomly from the bag with replacement. If X be the number of white balls drawn, then (mean of X)/(standard deviation of X)
is equal to:
(A) 4 (B) 4√3
(C) 3√2 (D) (4√3)/3
Answers
Answer: 4/3
Step-by-step explanation:
ARITHMETIC Mean -
For the values x1, x2, ....xn of the variant x the arithmetic mean is given by
\bar{x}= \frac{x_{1}+x_{2}+x_{3}+\cdots +x_{n}}{n}
in case of discrete data.
Standard Deviation -
In case of discrete frequency distribution
\sigma = \sqrt{\frac{\sum f_{i}x_{i}^{2}}{\sum f_{i}}-\left ( \frac{\sum f_{i}x_{i}}{\sum f_{i}} \right )^{2}}
P(white ball) = \frac{30}{40}=\frac{3}{4}
q=\frac{1}{4} and n = 16
mean (X) = np =16\times \frac{3}{4}
= 12
Standard deviation (X) = \sqrt{npq}=\sqrt3
Ans. \frac{12}{\sqrt3}= 4\sqrt3
Option 1)
\frac{4\sqrt3}{3}
Option 2)
4
Option 3)
3\sqrt2
ARITHMETIC Mean -
For the values x1, x2, ....xn of the variant x the arithmetic mean is given by
\bar{x}= \frac{x_{1}+x_{2}+x_{3}+\cdots +x_{n}}{n}
in case of discrete data.
Standard Deviation -
In case of discrete frequency distribution
\sigma = \sqrt{\frac{\sum f_{i}x_{i}^{2}}{\sum f_{i}}-\left ( \frac{\sum f_{i}x_{i}}{\sum f_{i}} \right )^{2}}
P(white ball) = \frac{30}{40}=\frac{3}{4}
q=\frac{1}{4} and n = 16
mean (X) = np =16\times \frac{3}{4}
= 12
Standard deviation (X) = \sqrt{npq}=\sqrt3
Ans. \frac{12}{\sqrt3}= 4\sqrt3
Option 1)
\frac{4\sqrt3}{3}
Option 2)
4
Option 3)
3\sqrt2
Option
4\sqrt3