'a bag contains RS155 in the form of 1RS,50 paise,10 paise coins in the ratio 3:5:7. find the no.of of each type of coins'
arghadeep:
i cant do this sorry.
Answers
Answered by
30
let the number of coins are 3x, 5x and 7x of Rs.1, 50 paise and 10 paise
3x + 5x/2 + 7x/10 = 155
6.2x = 155
x = 25
so number of coins are 75, 125 and 175 of Rs.1, 50 paise and 10 paise.
3x + 5x/2 + 7x/10 = 155
6.2x = 155
x = 25
so number of coins are 75, 125 and 175 of Rs.1, 50 paise and 10 paise.
Answered by
8
1 rs:50 paise: 1 paise=3:5:7
then multiple with a common number
3k,5k,7k
we know that 2 ,50 paise is one rupee and 10 ,10 paise is 1 rupee
so
3k+[tex] \frac{5k}{2} + \frac{7k}{10} =155 \\ \\ \frac{50k+14k}{20} +3k=155 \\ \\ \frac{64k+60k}{20} =155 \\ \\ \frac{124k}{20}=155 \\ 124k=3100 \\ k= \frac{3100}{124} k=25[/tex]
1 rupee coins=3k=3*25=75 coins
50 paise coins=5k=5*25=125 coins
10 paise coins=7k=25*7=175 coins
then multiple with a common number
3k,5k,7k
we know that 2 ,50 paise is one rupee and 10 ,10 paise is 1 rupee
so
3k+[tex] \frac{5k}{2} + \frac{7k}{10} =155 \\ \\ \frac{50k+14k}{20} +3k=155 \\ \\ \frac{64k+60k}{20} =155 \\ \\ \frac{124k}{20}=155 \\ 124k=3100 \\ k= \frac{3100}{124} k=25[/tex]
1 rupee coins=3k=3*25=75 coins
50 paise coins=5k=5*25=125 coins
10 paise coins=7k=25*7=175 coins
Similar questions