Math, asked by Runku, 1 year ago

If cosec tita+cot tita : k then prove that cos tita : k2-1/k2+1


shivam2000: question is incomplete
Runku: Now it is complete .answer it

Answers

Answered by TPS
20
cosec β + cot β = k
⇒1/sin β + cos β/sin β = k
⇒(1 + cos β) / sin β = k
⇒(1 + cos β) / √(1 - cos² β) = k
⇒(1 + cos β) / √(1 + cos β)(1 - cos β)= k
⇒√[(1 + cos β) / (1 - cos β)] = k
⇒(1 + cos β) / (1 - cos β) = k²/1
⇒[(1 + cos β) - (1 - cos β) ]/[(1 - cos β) + (1 + cos β) ] = (k²-1)/(k²+1)
(using the formula if  \frac{a}{b}  \frac{c}{d}
then  \frac{a-b}{a+b}  \frac{c-d}{c+d} )

⇒(2 cos β)/ 2 = (k²-1)/(k²+1)
⇒cos β = (k²-1)/(k²+1)
Answered by karthik4297
4
Δ Given that ,
                      cosecα+cotα = K
             
   \frac{1}{sin \alpha } + \frac{cos \alpha }{sin \alpha } =K

or,   \frac{1+cos \alpha }{sin \alpha } =K

or,cos \alpha +1=K.sin \alpha
Now squaring both side of this Eqn,
or,      (cos \alpha +1)^{2} = (Ksin \alpha )^{2}
or,      cos^{2}  \alpha +1+2cos \alpha = K^{2}  sin^{2} \alpha =k^{2}.(1- cos^{2} \alpha )

or,      cos^{2}  \alpha +K^{2} . cos^{2} \alpha +2cos \alpha  +1= K^{2}

or,     (1+ K^{2} ) cos^{2} \alpha  +2cos \alpha +(1- K^{2})=0

or,     ( K^{2} +1) cos^{2}  \alpha +(1+ K^{2} )cos \alpha +(1- K^{2} )cos \alpha +(1- K^{2} )=0

or,     (1+ K^{2} ).cos \alpha (cos \alpha +1)+(1- K^{2} )(cos \alpha+1 )=0

or,    [(1+K^{2} )cos \alpha +(1- K^{2} )][cos \alpha +1]=0

therefore ,   
                   (1+K^{2} )(cos \alpha )+(1- K^{2} )=0

or,              (1+ K^{2})cos \alpha =-(1- K^{2})=  K^{2}-1
 
so,         cos \alpha =  \frac{ K^{2}-1 }{ K^{2}+1 }
                                                            Proved
And,         cosα+1 = 0
           so, cosα = -1
Similar questions