If cosec tita+cot tita : k then prove that cos tita : k2-1/k2+1
shivam2000:
question is incomplete
Answers
Answered by
20
cosec β + cot β = k
⇒1/sin β + cos β/sin β = k
⇒(1 + cos β) / sin β = k
⇒(1 + cos β) / √(1 - cos² β) = k
⇒(1 + cos β) / √(1 + cos β)(1 - cos β)= k
⇒√[(1 + cos β) / (1 - cos β)] = k
⇒(1 + cos β) / (1 - cos β) = k²/1
⇒[(1 + cos β) - (1 - cos β) ]/[(1 - cos β) + (1 + cos β) ] = (k²-1)/(k²+1)
(using the formula if =
then = )
⇒(2 cos β)/ 2 = (k²-1)/(k²+1)
⇒cos β = (k²-1)/(k²+1)
⇒1/sin β + cos β/sin β = k
⇒(1 + cos β) / sin β = k
⇒(1 + cos β) / √(1 - cos² β) = k
⇒(1 + cos β) / √(1 + cos β)(1 - cos β)= k
⇒√[(1 + cos β) / (1 - cos β)] = k
⇒(1 + cos β) / (1 - cos β) = k²/1
⇒[(1 + cos β) - (1 - cos β) ]/[(1 - cos β) + (1 + cos β) ] = (k²-1)/(k²+1)
(using the formula if =
then = )
⇒(2 cos β)/ 2 = (k²-1)/(k²+1)
⇒cos β = (k²-1)/(k²+1)
Answered by
4
Δ Given that ,
cosecα+cotα = K
or,
or,
Now squaring both side of this Eqn,
or,
or,
or,
or,
or,
or,
or,
therefore ,
or,
so,
Proved
And, cosα+1 = 0
so, cosα = -1
cosecα+cotα = K
or,
or,
Now squaring both side of this Eqn,
or,
or,
or,
or,
or,
or,
or,
therefore ,
or,
so,
Proved
And, cosα+1 = 0
so, cosα = -1
Similar questions