Science, asked by mahee86, 11 months ago

A ball is moving in a circular path with diameter 28m covers one revolution in 10 seconds calculate the speed with which it
is moving in the path?​

Answers

Answered by guganeshram2005
1

Answer:

8.8 m/s

Explanation:

v=2πr/t

v= \frac{(2)(22/7)(14)}{10\\}

v= 88/10

v=8.8 m/s

Answered by Anonymous
41

 \large{\red{ \bf{ \underline{ \underline{Answer }}}}} \\  \\   \sf\purple{ 8.8 \: m/s} \\  \\  \pink{ \underline{ {\sf{Given}}}} \\  \\   \sf{ \rightarrow  \:Diameter = 28 \: cm } \\  \\   \sf{\rightarrow \: Time = 10 \: sec} \\  \\  \sf{ \blue {\underline{To \: Find}}} \\  \\ \sf{\rightarrow Speed=?}\\\\    \green\bigstar\sf\green {\underline{ Solution}}

The Total Path covered is one Circle,

Therefore the total distance covered in one revolution is the circumference.

Circumference

 \sf{ = 2\pi  r} \\  \\  \sf{ \implies 2\pi \times  \frac{28}{2} } \\  \\  \sf{ \implies 2 \times \frac{22}{7}  \times \frac{28}{2}  } \\  \\  \sf{ \implies 88 \: m}

Total time taken for 1 revolution is 10 sec

 \sf{ \therefore \:  speed  \large=  \frac{distance}{time} } \\  \\  \sf{ \implies  \frac{88}{10} } \\  \\  \sf{\purple{ \implies}}\sf{\purple{\underline{\boxed{\text{8.8 \: m/sec}}}}}

Similar questions