Physics, asked by vickymahant06, 3 months ago

A ball is projected with a velocity af 40 m/s
at the angle of 60° with the horizontal
cohat maximum will it rise ?
What will be its horizontal range?
(g= 10m/s²)​

Answers

Answered by BrainlyTwinklingstar
23

Given :

initial velocity = 40m/s

angle of projection = 60°

To find :

The horizontal range.

Solution :

First we have to find the maximum height,

Maximum height (h) is given by,

 \boxed{ \sf h =  \dfrac{ {u}^{2}  {sin}^{2} \theta }{2g} }

where,

  • h denotes maximum height
  • u denotes initial velocity
  • g denotes gravity

substituting the given values,

  : \implies{ \sf h =  \dfrac{ {(40)}^{2}  {sin}^{2} 60 \degree }{2 \times 10} }

:  \implies{ \sf h =  \dfrac{ 1600 \times  \dfrac{3}{4}  }{20} }

:  \implies{ \sf h =  \dfrac{ 400 \times 3}{20}}

:  \implies{ \sf h =  60 \: m }

Horizontal range (R) is given by,

:  \implies \sf R =  \dfrac{ {u}^{2} {sin}2 \theta  }{g}

:  \implies \sf R =  \dfrac{ {(40)}^{2} {sin}2 (60 \degree)  }{10}

:  \implies \sf R =  \dfrac{ 1600 \times  \dfrac{ \sqrt{3} }{2}   }{10}

:  \implies \sf R =  160 \times  \dfrac{ \sqrt{3} }{2}

:  \implies \underline{\boxed{ \sf R =  80 \sqrt{3} \:  m}}

thus, the horizontal range is 80√3 m.

Answered by vinshultyagi
23

Given :-

Initial Velocity = 40m/s

Projection = 60°

To find :-

Horizontal Range

Correct explanation:-

\longrightarrow{ \sf h = \dfrac{ {u}^{2} {sin}^{2} \theta }{2g} } \longleftarrow

\to{ \sf h = \dfrac{ {(40)}^{2} {sin}^{2} 60 \degree }{2 \times 10} }

 \to{ \sf h = \dfrac{ 1600 \times \dfrac{3}{4} }{20} }

\to{ \sf h = \dfrac{ 400 \times 3}{20}}

\to{ \sf h = 60 \: m }

Finding Horizontal range

\to \sf R = \dfrac{ {u}^{2} {sin}2 \theta }{g}

\to \sf R = \dfrac{ {(40)}^{2} {sin}2 (60 \degree) }{10}

\to\sf R = \dfrac{ 1600 \times \dfrac{ \sqrt{3} }{2} }{10}

\to \sf R = 160 \times \dfrac{ \sqrt{3} }{2}

\sf \to{\green{  R = 80 \sqrt{3} \: m}}

Horizontal range = 80√3 m.

Similar questions