Science, asked by pol1138, 10 months ago

A ball is released from the top of a tower of height h meters. it takes T seconds to reach the ground. what is the position of the ball in T/3 second
a) h/9 meters from the ground.
b) 7h/9 meters from ground.
c) 8h/9 meters from the ground.
d) 17h/ meters from the ground.

Answers

Answered by KINGofDEVIL
58

\huge\blue{\underline {\overline{\boxed{ \mathbb{ \orange{: ANSWER :}}}}}}

GIVEN :

Height of the tower = 'h' m.

Time taken by the ball to reach the ground = T sec.

TO FIND :

Position of the ball in  \sf \frac{T}{3} sec.

CORRECT OPTION :

\sf\green{(c) \frac{8h}{9} \: meter\: from\:the \: ground.}

SOLUTION :

Let the position of the ball in  \sf \frac{T}{3} sec be 'x' m from the ground.

Here, Initial velocity,u = O, Total Height = h, Total time = T and a = g.

We've, From 2nd Equation of motion

\implies\sf{ \blue{s = ut +  \frac{1}{2}  {at}^{2} }}

\implies\sf{h = (0 \times T) +  \frac{1}{2}  { \times g \times T}^{2}}

\implies\sf{h = \frac{1}{2}  { \times g \times T}^{2}}

 \implies \: \sf{h = \frac{ {gT}^{2} }{2} }

\implies\sf{ {T}^{2}  =  \frac{2h}{g} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rightarrow(1)

Now, for travelling (h-x) m, Time required =  \sf \frac{T}{3} sec.

Again from 2nd Equation of motion we have,

\sf{ \blue{s = ut +  \frac{1}{2}  {at}^{2} }}

On putting the required values we get,

 \implies\sf{(h - x) = (0 \times T) +  \frac{1}{2}  { \times g \times { (\frac{T}{3} )}^{2}}}

 \implies\sf{(h - x) =\frac{1}{2}  { \times g \times {  \frac{T}{9}}^{2}}}

[Putting the value of {T}^{2}, from (1) we get]

 \implies\sf{(h - x) = \frac{1}{2}  { \times g \times {\frac{ \frac{2h}{g} }{9}}}}

 \implies\sf{(h - x) = \frac{h}{9} }

 \implies\sf{ x= h - \frac{h}{9} }

 \implies\sf{ x=\frac{8h}{9} }

Hence, the position of the ball in  \sf \frac{T}{3} sec. is  \sf \frac{8h}{9} m from the ground.

#answerwithquality #BAL

Answered by Anonymous
145

Answer:

GIVEN :

Height of the tower = 'h' m.

Time taken by the ball to reach the ground = T sec.

TO FIND :

Position of the ball in \sf \frac{T}{3}3T sec.

CORRECT OPTION :

\sf\green{(c) \frac{8h}{9} \: meter\: from\:the \: ground.}(c)98hmeterfromtheground.

SOLUTION :

Let the position of the ball in \sf \frac{T}{3}3T sec be 'x' m from the ground.

Here, Initial velocity,u = O, Total Height = h, Total time = T and a = g.

We've, From 2nd Equation of motion

\implies\sf{ \blue{s = ut + \frac{1}{2} {at}^{2} }}⟹s=ut+21at2

\implies\sf{h = (0 \times T) + \frac{1}{2} { \times g \times T}^{2}}⟹h=(0×T)+21×g×T2

\implies\sf{h = \frac{1}{2} { \times g \times T}^{2}}⟹h=21×g×T2

\implies \: \sf{h = \frac{ {gT}^{2} }{2} }⟹h=2gT2

\implies\sf{ {T}^{2} = \frac{2h}{g} } \: \: \: \: \: \: \: \: \: \: \: \: \rightarrow(1)⟹T2=g2h→(1)

Now, for travelling (h-x) m, Time required = \sf \frac{T}{3}3T sec.

Again from 2nd Equation of motion we have,

\sf{ \blue{s = ut + \frac{1}{2} {at}^{2} }}s=ut+21at2

On putting the required values we get,

\implies\sf{(h - x) = (0 \times T) + \frac{1}{2} { \times g \times { (\frac{T}{3} )}^{2}}}⟹(h−x)=(0×T)+21×g×(3T)2

\implies\sf{(h - x) =\frac{1}{2} { \times g \times { \frac{T}{9}}^{2}}}⟹(h−x)=21×g×9T2

[Putting the value of {T}^{2}T2 , from (1) we get]

\implies\sf{(h - x) = \frac{1}{2} { \times g \times {\frac{ \frac{2h}{g} }{9}}}}⟹(h−x)=21×g×9g2h

\implies\sf{(h - x) = \frac{h}{9} }⟹(h−x)=9h

\implies\sf{ x= h - \frac{h}{9} }⟹x=h−9h

\implies\sf{ x=\frac{8h}{9} }⟹x=98h

Hence, the position of the ball in \sf \frac{T}{3}3T sec. is \sf \frac{8h}{9}98h m from the ground

Similar questions