Sociology, asked by rockstarxx, 9 months ago

A ball is thrown vertically upwards from the top of a
tower with an initial velocity of 19.6 ms. The ball
reaches the ground after 5 s. Calculate : (i) the height
of the tower, (ii) the velocity of ball on reaching the
ground. Take g = 9-8 m s-2​

Answers

Answered by Anonymous
3

\huge\underline{ \mathbb\red{❥A} \green{n} \mathbb\blue{S} \purple{w} \mathbb \orange{E} \pink{r}} \:</p><p>

▪️1.  The height of the tower is 24.5 m.

▪️2.  The velocity of the ball on reaching the ground is 29.4 m/s.

▪️Given:

         ▪️Initial velovity of ball 'u' = 19.6 m/s

         ▪️Time taken by ball to reach ground 't' = 5sec.

       

▪️ Gravity 'g' = 9.8 m/s

Solution:

         ▪️we know that,

                                  ▪️⇒ g = \frac{v}{t}  

                                  ▪️ ⇒   t = \frac{v}{g}

                                         = \frac{19.6}{9.8}

▪️So,  ▪️  ⇒   t = 2 sec.

it means time taken to reach max. height is 2 seconds.

▪️It means 2 seconds are taken by the ball to reach back to tower and rest of 1 second to reach to ground.

▪️it means first two seconds are taken to make final velocity 'v' is zero (max. height).

                                 ▪️ ⇒ v = 0 m/s

▪️Time taken is 1 second to calculate height of tower (written above).

▪️So, using equation of motion,

                                  ▪️⇒ s = ut + \frac{1}{2} a t^{2}

                                  ▪️⇒ s = 19.6 x 1 + \frac{1}{2} x 9.8 x 1^{2}

                                  ▪️⇒ s = 24.5 m

▪️From zero initial velocity at time 2 seconds to ground where time is 5 seconds. Now, time taken is 3 seconds from max. height to ground.

                                       

now,                            ▪️ ⇒ v = u + at

                                   ▪️⇒ v = 0 + 9.8 x 3

                                   ▪️⇒ v = 29.4 m/s

Answered by jiya9614
21

Answer:

\color{lime}\boxed{ANSWER}&lt;body bgcolor=black&gt;&lt;maquee direction="up"&gt;&lt;font color=red&gt;

********************************

▪️1.  The height of the tower is 24.5 m.

▪️2.  The velocity of the ball on reaching the ground is 29.4 m/s.

▪️Given:

         ▪️Initial velovity of ball 'u' = 19.6 m/s

         ▪️Time taken by ball to reach ground 't' = 5sec.

       

▪️ Gravity 'g' = 9.8 m/s

Solution:

         ▪️we know that,

                                  ▪️⇒ g = \frac{v}{t}  

                                  ▪️ ⇒   t = \frac{v}{g}

                                         = \frac{19.6}{9.8}

▪️So,  ▪️  ⇒   t = 2 sec.

it means time taken to reach max. height is 2 seconds.

▪️It means 2 seconds are taken by the ball to reach back to tower and rest of 1 second to reach to ground.

▪️it means first two seconds are taken to make final velocity 'v' is zero (max. height).

                                 ▪️ ⇒ v = 0 m/s

▪️Time taken is 1 second to calculate height of tower (written above).

▪️So, using equation of motion,

                                  ▪️⇒ s = ut + \frac{1}{2} a t^{2}

                                  ▪️⇒ s = 19.6 x 1 + \frac{1}{2} x 9.8 x 1^{2}

                                  ▪️⇒ s = 24.5 m

▪️From zero initial velocity at time 2 seconds to ground where time is 5 seconds. Now, time taken is 3 seconds from max. height to ground.

                                       

now,                            ▪️ ⇒ v = u + at

                                   ▪️⇒ v = 0 + 9.8 x 3

                                   ▪️⇒ v = 29.4 m/s

********************************

Similar questions