Math, asked by Neevan9035, 1 year ago

A balloon is in the form of a right circular cylinder of radius 1.5 m and height 4 m and is surmounted by hemisphere ends. If the radius is increased by 0.01 m and the height by 0.05 m, find the percentage change in the volume of the balloon

Answers

Answered by ayushkatiyar81
2
get ur percentage yourself
Attachments:
Answered by wifilethbridge
1

Answer:

2.4%

Step-by-step explanation:

A balloon is in the form of a right circular cylinder with hemisphere at it two ends

Height of cylinder = 4 m

Radius of cylinder = 1.5 m

Volume of cylinder = \pi r^2 h

                                = 3.14 \times 1.5^2 \times 4

                                = 28.26 m^3

radius of hemisphere = 1.5 m

Volume of hemisphere = \frac{2}{3} \pi r^3

Volume of 2 hemispheres = 2 \times \frac{2}{3} \pi r^3

                                            = 2 \times \frac{2}{3}  \times 3.14 \times 1.5^3

                                            = 14.13 m^3

So, Volume of balloon = 28.26 m^3+14.13 m^3=42.39 m^3

The radius is increased by 0.01 m and the height by 0.05 m

Radius = 1.5+0.01 = 1.51 m

Height = 4+0.05=4.05 m

Volume of cylinder = \pi r^2 h

                                = 3.14 \times 1.51^2 \times 4.05

                                = 28.9960317 m^3

radius of hemisphere = 1.51 m

Volume of hemisphere = \frac{2}{3} \pi r^3

Volume of 2 hemispheres = 2 \times \frac{2}{3} \pi r^3

                                            = 2 \times \frac{2}{3}  \times 3.14 \times 1.51^3

                                            = 14.4144881867 m^3

Volume of new balloon = 28.9960317  m^3+14.4144881867 m^3=43.4105198867 m^3

Change in Volume = 43.4105198867-42.39=1.0205198867 cubic m.

Percentage change = \frac{Change}{Original} \times 100

Percentage change = \frac{1.0205198867}{42.39} \times 100

Percentage change = 2.40745432107\%

Hence the percentage change in the volume of the balloon is 2.4%

Similar questions