Physics, asked by paulgautam666, 1 year ago

A baloon  with mass 'm' is descending down with an acceleration  'a' . How much mass should be removed from it  so that it so that it starts moving up with an acceleration'a'?

Answers

Answered by BrainlyConqueror0901
9

\blue{\bold{\underline{\underline{Answer:}}}}

{\green{\therefore{\text{ x=}}\frac{2ma}{g+a}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a balloon is descending with mass m.

• We have to find the minimum weight that can be remove from ballon so that the balloon goes up with acceration a.

 \green{\underline \bold{Given : }} \\ :\implies \text{Mass \: of \: balloon = m} \\\\ :\implies \text{Force \: acting \: upward = f} \\\\ :\implies \text{Downward \: force = mg} \\\\ :\implies a \lt g \\\\ :\implies \text{Let \: remove \: mass = x}\\ \\ \bold{ Removing \: x \: mass } \\\\ \bold{So \: downward \: force = xg }\\ \\ \red{\underline \bold{To \: Find : }} \\\\ :\implies \text{Extract \: mass = x}

• According to given question :

 \bold {Case \:1} \\\\ \bold{When \: balloon \: weight \: is \: m}\\\\ :\implies mg - f = ma - - - - - (1) \\ \\ \bold {Case \:2} \\\\ \bold{when \: x \: mass \: remove \: from \: balloon} \\\\ :\implies f - mg - xg = ma -xa \\\\ :\implies f - (m - x)g = (m - x)a - - - - - (2) \\ \\ \bold {Adding \: (1) \: and \: (2)} \\\\ :\implies mg - f + f - (m - x)g = ma + (m - x)a \\\\ :\implies mg - mg + xg = ma + ma - xa\\\\ :\implies xg + ax = 2ma \\\\ :\implies x(g + a) = 2ma \\\\ \green{:\implies x = \frac{2ma}{g + a} }

Answered by ShivamKashyap08
13

Answer:

\bullet \; \large{\tt \Delta \; m = \dfrac{2 \; ma}{g + a}}

Given:

  1. Mass of balloon = m
  2. Acceleration = a
  3. Acceleration due to gravity = g  

Explanation:

\rule{300}{1.5}

Case - 1

Let the Resistive  Force exerted by Air be denoted as " B ".

Now, if the Body is moving Down, the Resistive Force (B) will be Less than weight of the Balloon [ B < Mg ]

Now,

When the Balloon is descending down with Acceleration " a "

\longmapsto\large{\tt F_{(net)} = W - B}

\longmapsto\large{\tt m \times a  = mg - B \; \; \; \because\left[F = ma \; , W = mg \right]}

Now,

\longmapsto\large{\tt mg - B = ma \; \quad\dfrac{\quad}{}[1]}

\rule{300}{1.5}

\rule{300}{1.5}

Case - 2

Assumption:

Here, we should assume that while removing some mass the volume of balloon and hence Resistive Force will not change.

Let the new mass of the balloon is " m' "

Now, if the Body is moving up Now, the Resistive Force (B) will be More than weight of the Balloon [ B > m'g ]

Now,

When the Balloon is ascending down with Acceleration " a "

\longmapsto\large{\tt F_{(net)} = B - W}

\longmapsto\large{\tt m' \times a  = m'g - B \; \; \; \because\left[F = m'a \; , W = m'g \right]}

Now,

\longmapsto\large{\tt B - m'g = m'a \; \quad\dfrac{\quad}{}[2]}

\rule{300}{1.5}

\rule{300}{1.5}

Adding Equations [1] & [2]

Therefore,

+\large{\begin{array}{c c c c c} \tt{mg} &amp; - &amp; \tt{B} &amp; = &amp; \tt{ma} \\ \\  \tt{B} &amp; - &amp; \tt{m'g} &amp; = &amp; \tt{m'a}\end{array}} \\\\ \rule{120}{0.5} \\\\ \tt mg - B + B - m'g = ma + m'a \\\\ \rule{120}{0.5}

We get,

\longmapsto\large{\tt mg - B + B - m'g = ma + m'a}

\longmapsto\large{\tt mg \; \cancel{- \; B\; } \cancel{\; + B} - m'g = ma + m'a}

\longmapsto\large{\tt mg  - m'g = ma + m'a}

Rearranging,

\longmapsto\large{\tt mg  - ma = m'g + m'a}

\longmapsto\large{\tt m(g  - a) = m'(g + a)}

Now,

\longmapsto\large{\underline{\boxed{\tt m' = \dfrac{m(g - a)}{g + a}}}}

\rule{300}{1.5}

\rule{300}{1.5}

Mass removed = Δ m

\longmapsto\large{\tt \Delta \; m = m - m'}

Substituting the values,

\longmapsto\large{\tt \Delta \; m = m - \dfrac{m(g - a)}{g + a}}

\longmapsto\large{\tt \Delta \; m = m\left[1  - \dfrac{(g - a)}{g + a}\right]}

\longmapsto\large{\tt \Delta \; m = m\left[\dfrac{g + a - (g - a)}{g + a}\right]}

\longmapsto\large{\tt \Delta \; m = m\left[\dfrac{g + a - g + a}{g + a}\right]}

\longmapsto\large{\tt \Delta \; m = m\left[\dfrac{a + a}{g + a}\right]}

\longmapsto\large{\tt \Delta \; m = m \times \left[\dfrac{2a}{g + a}\right]}

\longmapsto\large{\underline{\boxed{\red{\tt \Delta \; m = \dfrac{2 \; ma}{g + a}}}}}

Hence Derived !!

\rule{300}{1.5}

Similar questions