Physics, asked by ruchanshi873, 9 months ago

A beaker containing a liquid of density  moves up with an acceleration . The pressure due to the liquid at a depth  below the free surface of the liquid is​

Answers

Answered by nirman95
54

Answer:

Given:

A beaker contains liquid of density ρ.

The beaker is accelerated up with

a m/s².

To find:

Pressure due to liquid column at a depth "h" from the free surface of the liquid.

Concept:

In order to calculate the pressure exerted , we will consider a cylindrical column of water of height h.

Since the beaker is accelerated upwards, the column experiences pseudo-force downwards , hence total acceleration :

 \sf{a_{total} = (g + a)}

Calculation:

Weight of the column be w , height be h and Cross-section area be s.

 \sf{w = m \times a_{total}}

 \sf{ \implies \: w =  \{m \times (g + a) \}}

 \sf{ \implies \: w =  \{(s \times h \times  \rho) \times (g + a) \}}

Now pressure exerted :

 \sf{ \implies \: p =  \dfrac{w}{area} }

 \sf{ \implies \: p =  \dfrac{ \{(s \times h \times  \rho) \times (g + a)}{s} }

 \sf{ \implies \: p =   \{\rho \times (g + a) \times h \}}

So final answer :

  \boxed{ \large{ \green{ \bold{\sf{  \: p =   \{\rho \times (g + a) \times h \}}}}}}

Attachments:
Answered by Anonymous
3

\underline{ \boxed{ \bold{ \rm{ \huge{ \purple{ \mathfrak{Answer}}}}}}} \\  \\  \star \rm \:  \red{Given} \\  \\  \implies \rm \: density \: of \: liquid =  \rho \\  \\  \implies \rm \: beaker \: is \: accelerated \: in \: upward \\  \rm \: direction \: with \: acc. \: a \\  \\  \implies \rm \: height \: of \: liquid \: in \: beaker = H \\  \\  \star \rm \:  \red{To \: Find} \\  \\  \implies \rm \: pressure \: due \: to  \: height \: at \: the \\  \rm \: bottom  \: below \: the \: free \: surface \: of \\  \rm \: of \: the \: liquid \\  \\  \star \rm \:  \red{Concept} \\  \\  \implies \rm \: here \: beaker \: is \: accelerated \: in \\  \rm \: upward \: direction \: with \: acc. \: a \: so \\  \rm \: pseudo - force \: acts \: in \: downward \\  \rm \: direction... \\  \\  \therefore \rm \: net \: force \: in \: downward \: direction \\  \rm \: is \: given \: by... \\  \\   \rm \: \dagger \:  F{ \tiny{net}} = weight \: force + pseudo \: force \\  \\  \dagger \rm \:  \underline{ \pink{  \bold{ \rm{F{ \tiny{net}} = m(g + a)}}}} \:  \dagger \\  \\  \star \rm \:  \red{Formula} \\  \\  \implies \rm \: formula \: of \: pressure \: in \: terms \: of \\  \rm \: area \: and \:perpendicular \:  force \: is \: given  \\  \rm \: by... \\  \\  \dagger \:  \underline{ \boxed{ \bold{ \rm{ \purple{P =  \frac{F{ \tiny{perpendicular}}}{A} }}}}} \:  \dagger \\  \\  \star \rm \:  \red{Calculation} \\  \\  \implies \rm \: P =  \frac{m(g + a)}{A}  \\  \\  \rm \: \dagger \:  here \: perpendicular \: force \: is \: net \: force \\  \rm \: and \: A \: indicates \: area \: of \: free \: surface \\  \rm \: of \: liquid \: in \: beaker... \\  \\  \dagger \rm \: we \: know \: that \:   \boxed{ \rm{\blue{m =  \rho \times V}}} \\  \\  \therefore \rm \: P =  \frac{ \rho \times V \times (g + a)}{A}  \\  \\  \therefore  \:  \underline{ \boxed{ \bold{ \rm{ \orange{P =  \rho \times (g + a) \times H}}}}} \:  \red{ \star} \\  \\  \star \rm \:  \red{Additional \: Inf.} \\  \\  \implies \rm \: pressure \: at \: base \: point \: due \: to \\  \rm \: height \: does\: not \: depend \: on \: area \: of \\  \rm \: free \: surface... \\  \\  \implies \rm \: pressure \: due \: to \: height \: in \: non -  \\  \rm \: acceleratory \: motion \: is \: given \: by... \\  \\  \dagger \:  \underline{ \boxed{ \bold{ \rm{ \green{P =  \rho \times g \times H}}}}}  \:  \blue{ \star}

Attachments:
Similar questions