Physics, asked by ananyasingh321vns, 6 months ago

A block of mass 2 Kg moving on a horizontal surface with speed v = 2 m/s, enters a rough patch ranging from x =
0.10 m to x= 2.0 m. The retarding force F on the block is F = -k/x for 0.1 kinetic energy?

Answers

Answered by Anonymous
7

For 0.1<x<2.0

\sf F=\frac{-k}{x}\\

 \sf \implies \: ma =  \frac{ - k}{x}  \\

 \sf \implies mv \frac{dv}{dx}  =  \frac{ - k}{x}  \\

 \sf \implies \huge[ \small  \frac{m}{ - k} \huge] \small\int _{v_t}^{v_f}  \small \:  \: v.dv =  \int_{0.1}^{2.0}  \frac{ - 1}{x}\\

  \sf \implies \huge[ \small  \frac{m}{ - k} \huge] \huge[ \small  \frac{ {v}^{2} }{2} \huge]  \small_{v_t}^{v_f}  = [ln \: x]_{0.1}^{2.0}  \\

 \sf2.0 \implies \:  \frac{m {v}^{2}_{f} }{2}  -  \frac{m {v}^{2}_{t} }{2}  =  [ - k \: ]ln \: (2.0) \\

 \\  \\  \sf \:  \frac{m {v}^{2} _f}{2}  = [ - k]ln \: (2.0) +  \frac{m {v}^{2}_t }{2}

 \sf \implies \: K.E_f = ( - 0.5)ln(2.0) +  \frac{1}{2}  {g}^{2}  \\

 \implies \: k.e \:   \approx \: 4.9 \: j

Similar questions