English, asked by Anonymous, 11 months ago

a block of mass m moving at speed v collides with another block of mass 2 m at rest. the lighter block come to rest after the collision. find the coefficient of restitution ?​

Answers

Answered by Anonymous
14

\huge\boxed{\pink\star\mathfrak\orange{\large{\underline{\underline{Solution:-}}}} }

Suppose the second block moves at speed v' towards right after the collision. from the principal of conservation of momentum,

\large\boxed{\mathfrak\red{mv\:=\:2mv'}}

or

\large\boxed{\mathfrak\red{</u><u>v</u><u>'</u><u>\</u><u>:</u><u>=</u><u>\</u><u>:</u><u>v</u><u>/</u><u>2</u><u>}}

hence, the velocity of separation = v/2 and the velocity of approach = v.

\bold{by\: definition,}

</u><u>\</u><u>l</u><u>a</u><u>r</u><u>g</u><u>e</u><u>\</u><u>b</u><u>o</u><u>l</u><u>d</u><u>{</u><u>e =  \frac{velocity \: of \: sepration}{velocity \: of \: approach} </u><u>}</u><u>

</u><u>\</u><u>l</u><u>a</u><u>r</u><u>g</u><u>e</u><u>\</u><u>b</u><u>o</u><u>l</u><u>d</u><u>{</u><u> =  &gt;  \frac{ \frac{v}{2} }{v} </u><u>}</u><u>

</u><u>\</u><u>l</u><u>a</u><u>r</u><u>g</u><u>e</u><u>\</u><u>b</u><u>o</u><u>l</u><u>d</u><u>{</u><u>  =  &gt; \frac{1}{2} </u><u>}</u><u>

________________________________


Anonymous: thankyou ♥
Answered by Sukhpreet85
10

Answer: The value of e is 0.5

Explanation:

Given that,

Mass of first block= m

Mass of second block = 2m

Initial velocity of first block=u1 =v

Initial velocity of second block=u2 =0

The lighter block comes to rest after collision.

So,

Final velocity of first block=v1 =0

We know that,

From conservation of momentum

m1u1+m2u2= m1v1+m2v2

mv+0= 0+2mv2

v2= v/2

The coefficient of restitution is

e=v2-v1/u1-u2

e= v/2-0/v-0

e= 1/2

e= 0.5

Hence, the value of e is 0.5

Similar questions