Math, asked by simmik494, 8 months ago

A boat man rowed to a place along the current and returned against the current in 15hrs. If the speed of the boat in still water is 6km/h and that of the current be 2km/h then find the distance of the place.​

Answers

Answered by Anonymous
68

  \large{\red{ \bf{ \underline {\underline{Answer}}}}} \\  \\  \purple{ \sf{\mapsto Distance=40 \: km}} \\  \\   \mathrm{\green{ \underline{Given}}} \\  \\  \sf{ \rightsquigarrow Total\:time \: taken = 15 \: hr} \\  \\ \sf{ \rightsquigarrow Speed \: of \: boat=6\:km/hr} \\  \\ \sf{ \rightsquigarrow Speed \: of \: current=2\:km/hr}\\ \\ \mathrm  {\blue{ \underline{ To \: Find}}} \\  \\  \sf{ \rightsquigarrow Distance \: of \: the \: place\:=\:?}

⠀⠀

  • According to given question

⠀⠀

 \sf{Let \: the \: distance \: be \:x} \\  \\  \sf{The \:  time \: taken \: while \: going \: to \: place \: be \: t} \\  \\  \sf{ \therefore \:  \: Speed \: against \: current \:  = (6 - 2 )\: Km/hr} \\ \\ \sf{ =  \: 4 \: Km/hr} \\  \\  \sf{Speed \: along \: current  = (6 + 2)Km/hr} \\  \\ \sf{= 8 \: km/hr } \\  \\  \sf{\dashrightarrow Sailed \: along \: with \: current \: while \: going } \\  \\  \sf{ \therefore \:  \:  \boxed{ \sf \orange{Distance = Speed \times Time}}}

\sf{\implies x = 8 \times t} \\  \\  \sf{\implies x = 8t \:  -  -  -  - (1)} \\  \\  \sf{\dashrightarrow Sailed \: against \: current \: while \: returning \: } \\  \\  \sf{ \therefore \:  \: x = 4 \times (15 - t)} \:  \:  \:  \:  \: [Total \: time \: taken = 15] \\  \\  \sf{ \implies x = 60 - 4t \:  -  -  -  - (2)} \\  \\  \sf {\underline{ \bf{Solving \: equation \: (1) \: and \: equation \: (2)}}} \\  \\  \sf{ \implies 8t = 60 - 4t} \\  \\  \sf{ \implies 12t = 60} \\  \\  \sf{ \implies t = 5} \\  \\   \sf{Therefore, \: Distance = Speed \times Time} \\  \\ \sf{\implies Distance = 8 \times 5} \\ \\ \sf {\purple{ \implies}} \:  \purple{ \underline{ \boxed{ \sf{Distance = 40 \: Km}}}}   \: \orange{ \Large{\dag}}


JinKazama1: Nice :)
Answered by Anonymous
9

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Time taken by the boat = 15hours

  • Speed of boat in still water = 6 km/hr

  • Speed of current is = 2 km/hr

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • Distance of the place.

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \huge{\bf Case 1 }

 \:\:

Let the distance covered by the boat be 'd'

Let the time taken while going be 't'

 \:\:

\footnotesize{ \underline{\bold{\texttt{Boat is rowed along the current while going}}}}

 \:\:

That means this is a condition of downstream.

 \:\:

 \sf \footnotesize{ Speed \: in\:  downstream \: = \: Speed \: of \: current \: + \: Speed \: of \: boat \: in \: still \: water}

 \:\:

Speed while going = (2 + 6) km/hr

 \:\:

 \purple{\sf Speed \: while \: going \: = \: 8 \: km/hr}

 \:\:

 \sf \longmapsto Speed = \dfrac { Distance } { Time }

 \:\:

 \sf \longmapsto 8 = \dfrac { d } { t }

 \:\:

 \sf \longmapsto d = 8t -------(1)

 \:\:

 \huge{\bf Case 2 }

 \:\:

Again,

Distance covered is 'd'

Time taken while returning is '15 - t'

 \:\:

\footnotesize{ \underline{\bold{\texttt{Boat is rowed against the current while returning }}}}

 \:\:

That means this is a condition of upstream

 \:\:

 \sf \footnotesize{ Speed \: in\:  upstream \: = \: Speed \: of \: boat \: in \: still \: water \: - \: Speed \: of \: current}

 \:\:

Speed while returning = (6 - 2) km/hr

 \:\:

 \purple{\sf Speed \: while \: returning \: = \: 4 \: km/hr}

 \:\:

 \sf \longmapsto Speed = \dfrac { Distance } { Time }

 \:\:

 \sf \longmapsto 4 = \dfrac { d } { 15 - t}

 \:\:

 \sf \longmapsto d = 60 - 4t -----(2)

 \:\:

 \footnotesize{ \underline{\bold{\texttt{As distance will remain same hence (1) = (2)}}}}

 \:\:

 \sf \longmapsto 8t = 60 - 4t

 \:\:

 \sf \longmapsto 12t = 60

 \:\:

 \sf \longmapsto t = \dfrac { 60 } { 12 }

 \:\:

 \sf \longmapsto t = 5

 \:\:

Hence time taken while going is 5hrs.

 \:\:

So,

 \:\:

Time taken while returning is '15 - 5'

i.e 10hrs

 \:\:

 \underline{\bold{\texttt{Putting t = 5 in (1)}}}

 \:\:

 \sf \longmapsto d = 8(5)

 \:\:

 \sf \longmapsto d = 40

 \:\:

Hence distance of the place will be 40 km

\rule{200}5

Similar questions