Physics, asked by satishkumarkattiri3, 1 month ago

A body is freely falling from a hight of 30 m.Find the velocity with which it strikes the ground​

Answers

Answered by wadmahiyadav
2

Answer:

v = 0

When the body strikes the ground, it is obvious that it will come to rest i e. the final velocity will be zero.

Hope it helps !

MARK AS BRAINLIEST

Answered by Yuseong
12

\underline{\underline{\pmb{\frak{Answer : }}}}

24.24 m/s

\underline{\underline{\pmb{\frak{Explanation : }}}}

 \textbf{ \textsf{ \large \: Given}} \begin{cases} \sf Height \;  (h) = 30 \; m \\ \\ \sf Initial \; Velocity \; (u) = 0 \; m \: s^{-1} \\ \\ \sf Acceleration \; (g) =+ 9.8 \; m \: s^{-2} \\ \end{cases}

Here, the initial velocity is zero because the ball has been dropped gentry from the height.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To find : The velocity with which it strikes the ground i.e, final velocity (v).

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\underline{\bf{ By \; using \; the \;} \rm{ 3rd \; Eq^n} \; \bf{ of \; motion} :}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bigstar \qquad \underline{\boxed { \pmb{\sf {v}}^{\pmb{\sf {2}}} - \pmb{\sf {u}}^{\pmb{\sf {2}}} = \pmb{\sf {2gh}} }}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • v denotes final velocity
  • u denotes initial velocity
  • g denotes acceleration due to gravity
  • h denotes height

\\ \\ \twoheadrightarrow \qquad \sf { v^2 - \Big (0 \Big )^2 = 2 \times 9.8 \times 30 }\\ \\

\\ \\ \twoheadrightarrow \qquad \sf { v^2 - 0 = 588 }\\ \\

\\ \\ \twoheadrightarrow \qquad \sf { v^2  = 588 }\\ \\

\\ \\ \twoheadrightarrow \qquad \sf { v = \sqrt{588} }\\ \\

\\ \\ \twoheadrightarrow \qquad \underline{\boxed{\pmb{\sf {v = 24.24 }} \; \pmb{\sf{ m\: s^{-1}}} }}\\ \\

Therefore, the velocity with which it strikes the ground is 24.24 m/s.

⠀⠀⠀⠀___________________________⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀\underline{\bf {More \; Information}}

Equations of motion :

⠀⠀⠀⠀⠀⠀⠀★ v = u + gt

⠀⠀⠀⠀⠀⠀⠀★ h = ut + ½gt²

⠀⠀⠀⠀⠀⠀⠀★ v² – u² = 2gh

Where,

  • v denotes final velocity
  • u denotes initial velocity
  • g denotes acceleration due to gravity
  • h denotes height
  • t denotes time

rsagnik437: Great ! :)
Similar questions