Physics, asked by tonystark100000, 4 months ago

A body is moved along a straight line by a machine delivering a constant power. The distance moved by the body in time t is proportional to

Answers

Answered by anusha5346didiji
0

Answer:

Explanation:

Let's consider a body is moved along a straight line by a machine delivering a constant power P. The distance moved by the body is S.  

Power, P=F.v.. . . . . . (1)

Force, F=ma . . . . . . . .(2)

where, v=  

t

S

​  

 

acceleration, a=  

t  

2

 

S

​  

 

m= mass

from  equation (1) and equation (2), we get

P=  

t  

2

 

mS

​  

×  

t

S

​  

 

S  

2

=  

m

Pt  

3

 

​  

 

From the above equation, we get

S  

2

∝t  

3

 

S∝t  

3/2

 

Answered by ITZBFF
7

 \boxed{ \boxed {\sf \red{Key \:  Idea}}} \\

In case of velocity changing with distance, we apply integration method to determine the relationship between distance and time, if force is given

 \boxed{ \boxed {\sf \red{Let  \: us  \: come \:  to \:  question}}} \\

 \sf{As,  \: Power, P = constant}

 \implies \sf \: Fv = P \:  \:  \:  \:  \:  \:  \:  \:   (\because P = force \times velocity)

 \implies \sf \:  Ma \times v = P \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   (\because F = Ma)

 \implies  \sf\:  va =  \frac{P}{M}  \\

 \implies \sf \: v \times  \Bigg[ \frac{v \: dv}{ds}\Bigg ]  =  \frac{P}{M}   \:  \:  \:  \:  \: \Bigg( \because \: a =  \frac{v \: dv}{ds} \Bigg) \\

 \implies \sf  \int \limits   ^{v} _0 \:  {v}^{2}  \: dv =  \int \limits   ^{s} _0  \frac{P}{M}  \: ds \\

(assuming at t = 0 it starts from rest, i.e., from s = 0)

 \implies \sf  \frac{ {v}^{3} }{3}  =  \frac{P}{M}  \: s \\

 \implies \sf \: v \:   =  \bigg( \frac{3P}{M}  \bigg)^{1/3}. {s}^{1/3}   \\

 \implies \sf  \frac{ds}{dt}  = K \:  {s}^{1/3}   \: \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \Bigg[  \because \: K =  \bigg( \frac{3P}{M}  \bigg)^{1/3} \Bigg] \\

 \implies \sf \int \limits ^{s} _0 \frac{ds}{ {s}^{1/3 } }  =  \int \limits ^{t} _0 \: K \:  dt  \\

 \implies \sf  \frac{ {s}^{2/3 } }{2/3 }  =  Kt \\

 \implies \sf \:  {s}^{2/3 }  =  \frac{2}{3}  Kt \\

 \implies \sf s =  \bigg( \frac{2}{3}  K \bigg)^{3/2}  \:  \times  \:  {t}^{3/2}  \\

 \implies  \boxed{ \boxed{\: s \propto \:  {t}^{3/2} }}

Similar questions