A body moving with a constant acceleration
travels the distances 3 m and 8 m respectively in
I s and 2 s. Calculate : (i) the initial velocity, and
(ii) the acceleration of body.
Ans. (1) 2 ms-1 GH)2 m2
Answers
Case 1:
We know
s = ut + 1/2 a. t2
Or s1 = ut1 + 1/2 a. t12
or 3 = u . 1 + 1/2 .a . 12
or 3 = u + a/2 -------Eqn. 1
Case 2:
s2 = ut2 + 1/2 a. t22
or 8 = u . 2 + 1/2 .a . 22
or 8 = 2u + 2a
or 8/2 = (2u + 2a)/2
or 4 = u + a -------Eqn. 2
Subracting Eqn. 1 from Eqn. 2 (Eqn. 2 - Eqn. 1) We have:
4 - 3 = (u + a) - (u + a/2)
Or 1 = u + a - u - a/2
Or 1 = a - a/2
Or 1 = (2a - a)/2
Or 1 = a /2
Or a = 2 m/s2
Putting the value of a in Eqn. 1 we have:
3 = u + 2/2
3 = u + 1
Or u = 3 - 1
Or u = 2 m/s
∴ Initial velocity (u)= 2 m/s
Acceleration (a) = 2 m/s2
❣
Answer:We know
s = ut + 1/2 a. t2
Or s1 = ut1 + 1/2 a. t12
or 3 = u . 1 + 1/2 .a . 12
or 3 = u + a/2 -------Eqn. 1
Case 2:
s2 = ut2 + 1/2 a. t22
or 8 = u . 2 + 1/2 .a . 22
or 8 = 2u + 2a
or 8/2 = (2u + 2a)/2
or 4 = u + a -------Eqn. 2
Subracting Eqn. 1 from Eqn. 2 (Eqn. 2 - Eqn. 1) We have:
4 - 3 = (u + a) - (u + a/2)
Or 1 = u + a - u - a/2
Or 1 = a - a/2
Or 1 = (2a - a)/2
Or 1 = a /2
Or a = 2 m/s2
Putting the value of a in Eqn. 1 we have:
3 = u + 2/2
3 = u + 1
Or u = 3 - 1
Or u = 2 m/s
∴ Initial velocity (u)= 2 m/s
Acceleration (a) = 2 m/s2