Physics, asked by arathivharikumar, 6 months ago

A body moving with uniform acceleration describes 4 m in third second and 12 m in fifth second. Find the distance described in next three second?​

Answers

Answered by Atαrαh
13

Solution :-

The distance covered by the body in Sn th second is given by ,

\dag \:\boxed{\mathtt{S_n= u + \dfrac{a}{2}(2n-1)}}

Third second

  • Distance covered = 4 m

Now ,

\longrightarrow\mathtt{S_3= u + \dfrac{a}{2}(2n-1)}

\longrightarrow\mathtt{4= u + \dfrac{a}{2}(2x3-1)}

\longrightarrow\mathtt{4= u + \dfrac{5a}{2}}

\longrightarrow\mathtt{8= 2u + 5a} ....(1)

Fifth second

  • Distance covered = 12 m

Now ,

\longrightarrow\mathtt{S_5= u + \dfrac{a}{2}(2n-1)}

\longrightarrow\mathtt{12 = u + \dfrac{a}{2}(2x5-1)}

\longrightarrow\mathtt{12= u + \dfrac{9a}{2}}

\longrightarrow\mathtt{24= 2u + 9a} ....(2)

Substracting (1) from (2)

\longrightarrow\mathtt{16= 4a}

\longrightarrow\boxed{\mathtt{a = 4 \dfrac{m}{s^{2} } }}

Substituting the value of a in (1) we get ,

\longrightarrow\mathtt{8= 2u + 5x 4 }

\longrightarrow\mathtt{8= 2u + 20}

\longrightarrow\mathtt{2u = -12 }

\longrightarrow\boxed{\mathtt{u = -6 \dfrac{m}{s} }}

Distance covered in 5 seconds

\longrightarrow\mathtt{S = ut + \dfrac{1}{2}at^{2} }

\longrightarrow\mathtt{S= -6 x 5+ \dfrac{1}{2}(4x25)}

\longrightarrow\mathtt{S= - 30+ 50 }

\longrightarrow\mathtt{S= 20 m }

Distance covered in 8 seconds

\longrightarrow\mathtt{S'= ut + \dfrac{1}{2}at^{2} }

\longrightarrow\mathtt{S'= -6 x 8+ \dfrac{1}{2}(4x64)}

\longrightarrow\mathtt{S'= - 48+ 128 }

\longrightarrow\mathtt{S'= 80 m }

Distance covered in next 3 second

\longrightarrow\mathtt{S' - S }

\longrightarrow\mathtt{80 - 60 }

\longrightarrow\mathtt{60 m }

The distance covered by the body in next 3 seconds is 60 m

Similar questions