Physics, asked by vineetpal554, 14 days ago

A body moving with uniform acceleration has velocities 20 m s-1 and 30 m s-1 wh
en passing two points A and B. Then the velocity midway between A and B is :​

Answers

Answered by LaeeqAhmed
4

\color{red}\huge{\underline{\underline{\bf GIVEN\dag}}}

  •  \sf{velocity(u) = 20 {ms}^{ - 1} }
  •  \sf{velocity(v) = 30 {ms}^{ - 1} }

\color{red}\huge{\underline{\underline{\bf SOLUTION\dag}}}

\purple{\sf{let;}}

 \sf acceleration(a)  =a

 \sf Displacement(s)  =   AB = x

\purple{\sf{we \: know \: that;}}

 \red{ \boxed{ {v}^{2} -  {u}^{2} = 2as  }}

 \implies \sf{{(30)}^{2} -  {(20)}^{2} = 2ax}

 \implies \sf{900 - 400 = 2ax}

 \implies \sf{2ax = 500}

  \implies \sf{a =  \frac{250}{x} }

 \purple{ \sf{at \: midpiont : }}

 \sf{dispacement(s) =  \frac{x}{2} }

 \sf{velocity \: at \: mid \: point =  v_{m} }

 \purple{ \sf{applying \: formula : }}

 \implies  {(v_{m} )}^{2}  -  {(20)}^{2}  = 2( \frac{250}{x} )( \frac{x}{2} )

 \implies  {(v_{m} )}^{2}   = 250 + 400

\implies  {(v_{m} )}^{2}   = 650

\implies  v_{m}    =  \sqrt{650}

 \orange{ \therefore v_{m}    =  25.5 {ms}^{ - 1}  }

Similar questions