A body of mass 0.2 kg is suspended from a spring of force constant 80 Nm−1
. A damping
force is acting on the system for which γ = 4 Nsm−1
. Write down the equation of motion
of the system and calculate the period of its oscillations. Now a harmonic force
F =10cos10t is applied. Calculate a and θ when the steady state response is given by
a cos(ωt − θ).
Answers
Answered by
4
m = 0.2 kg
Spring restoration force F = - k x , k = 80 N/m
Damping force F_d = -b v , where b = 4 N-sec/meter
F = - k x - b v --- (1)
m a = m d² x / d t² = - k x - b v
d² x /d t² = -k/m x - b/m dx/dt --- (2)
This is the equation of motion in the form of differential equation.
let x = A e^{-a x} Sin (ωt+Ф) --- (3)
we need to determine A, a, and ω.
differentiate two times:
dx/dt = - a A e^{-a x} Sin ωt + Aω e^{-a x} Cos ωt -- (4)
= A e^{-a x} [ - a Sin ωt + ω Cos ωt ]
d² x/d t² = a² A e^{-a x} Sin ωt - a A ω e^{-a x} Cos ωt
- Aaω e^{-a x} Cos ωt - Aω² e^{-a x} Sin ωt
= (a² - ω²) A e^{-a x} Sin ωt - 2 A a ωe^{-a x} Cos ωt ---- (5)
-kx/m - b/m * dx/dt = -k/m A e^{-a x} Sin ωt - b/m A e^{-ax} [- a Sin ωt + ω Cos ωt ]
= A e^{-ax} Sin ωt [ -k/m + ab/m ] - bω/m A e^{-ax} Cos ωt --- (6)
Compare equations (5) and (6), we get :
(ab-k)/m = (a² - ω²) -- (7)
2 a = b/m => b = 2 a m -- (8)
=> 2 a² - k / m = a² - ω²
=> ω² = (k/m - a²)
x = A e^{- a x } Sin [ √(k/m - a²) t + Ф ]
===========================
m = 0.2 kg , k = 80 N/m and b = 4 N-sec/m
b = 2 a m => a = 10 units
angular frequency ω = √ (k/m - a²) = √(400- 100) = 10√3 rad/sec
frequency = 5√3/π Hz and time period = T = 1/f = π /(5√3) sec = 0.362 sec
This is the dampened frequency of the spring mass system.
Natural frequency = ω₀ = √(k/m) = √(80/0.2) = 20 rad/sec
===============================
when a force of F = 10 Cos 10 t = F₁ Cos (ω₁t) s applied, The natural frequency of the force and the system are different. This is a case of forced oscillations.
net force = m a = - k x - b v + 10 Cos 10t --- (9)
m d²x/dt² = - k x - b dx/dt + 10 Cos 10t
steady state response : x = a Cos (ω₁ t - Ф), where,
ω₁ = frequency of the external force = 10 rad/sec.
so frequency = f₁ = 10/2π = 5/π Hz and the time period T₁ = π/5 Sec.
ω₀ = natural freuency of the spring with out damping or external force = √(k/m)
= 20 rad /sec
a = amplitude =
Ф = phase =
Spring restoration force F = - k x , k = 80 N/m
Damping force F_d = -b v , where b = 4 N-sec/meter
F = - k x - b v --- (1)
m a = m d² x / d t² = - k x - b v
d² x /d t² = -k/m x - b/m dx/dt --- (2)
This is the equation of motion in the form of differential equation.
let x = A e^{-a x} Sin (ωt+Ф) --- (3)
we need to determine A, a, and ω.
differentiate two times:
dx/dt = - a A e^{-a x} Sin ωt + Aω e^{-a x} Cos ωt -- (4)
= A e^{-a x} [ - a Sin ωt + ω Cos ωt ]
d² x/d t² = a² A e^{-a x} Sin ωt - a A ω e^{-a x} Cos ωt
- Aaω e^{-a x} Cos ωt - Aω² e^{-a x} Sin ωt
= (a² - ω²) A e^{-a x} Sin ωt - 2 A a ωe^{-a x} Cos ωt ---- (5)
-kx/m - b/m * dx/dt = -k/m A e^{-a x} Sin ωt - b/m A e^{-ax} [- a Sin ωt + ω Cos ωt ]
= A e^{-ax} Sin ωt [ -k/m + ab/m ] - bω/m A e^{-ax} Cos ωt --- (6)
Compare equations (5) and (6), we get :
(ab-k)/m = (a² - ω²) -- (7)
2 a = b/m => b = 2 a m -- (8)
=> 2 a² - k / m = a² - ω²
=> ω² = (k/m - a²)
x = A e^{- a x } Sin [ √(k/m - a²) t + Ф ]
===========================
m = 0.2 kg , k = 80 N/m and b = 4 N-sec/m
b = 2 a m => a = 10 units
angular frequency ω = √ (k/m - a²) = √(400- 100) = 10√3 rad/sec
frequency = 5√3/π Hz and time period = T = 1/f = π /(5√3) sec = 0.362 sec
This is the dampened frequency of the spring mass system.
Natural frequency = ω₀ = √(k/m) = √(80/0.2) = 20 rad/sec
===============================
when a force of F = 10 Cos 10 t = F₁ Cos (ω₁t) s applied, The natural frequency of the force and the system are different. This is a case of forced oscillations.
net force = m a = - k x - b v + 10 Cos 10t --- (9)
m d²x/dt² = - k x - b dx/dt + 10 Cos 10t
steady state response : x = a Cos (ω₁ t - Ф), where,
ω₁ = frequency of the external force = 10 rad/sec.
so frequency = f₁ = 10/2π = 5/π Hz and the time period T₁ = π/5 Sec.
ω₀ = natural freuency of the spring with out damping or external force = √(k/m)
= 20 rad /sec
a = amplitude =
Ф = phase =
kvnmurty:
tan Ф = v₀ / (ω₀ x₀), where v₀ , ω₀ and x₀ are the velocity, frequency and displacement at t = 0, of the system, just before the external force is applied.
v₀ = A ω₀ Cos (ω₀ t + Ф₀) = A ω₀ Cos Ф₀
tan Ф = cot Ф₀ = tan (π/2 - Ф₀)
=> Ф = π/2 - Ф₀
tan Ф = b ω₁ /[ m(ω₀² - ω₁²) ]
= 4 * 10 /[ 0.2 (20² - 10² ] = 2/3
Ф = 33.69 deg.
Similar questions