Physics, asked by ITSManish7460, 10 months ago

A body of mass 0.4 kg is whirled in a vertical
circle making 2 rev/sec. If the radius of the circle
is 1.2 m, then tension in the string when the body
is at the top of the circle, is
(a) 41.56 N (b) 89.86 N
(c) 109.86 N (d) 115.86 N

Answers

Answered by Anonymous
3

\huge\underline{\underline{\bf \orange{Question-}}}

A body of mass 0.4 kg is whirled in a vertical circle making 2 rev/sec. If the radius of the circle

is 1.2 m, then tension in the string when the body

is at the top of the circle, is

\huge\underline{\underline{\bf \orange{Solution-}}}

\large\underline{\underline{\sf Given:}}

  • Mass of body (m) = 0.4kg
  • Revolution/second = 2rev/s
  • Radius (R)=1.2

\large\underline{\underline{\sf To\:Find:}}

  • Tension at the top of circle (T)

\large{\boxed{\bf \blue{T+mg=\dfrac{mv^2}{R}} }}

\implies{\sf T=\dfrac{mv^2}{R}-mg}

\implies{\sf \pink{v=\omega r}}

\implies{\sf T=m\omega^2r-mg }

\implies{\sf T=m[(\omega)^2-g ]}

\implies{\sf \omega = 2×2π }

\implies{\sf \pink{\omega =4π}}

\implies{\sf T=0.4[(4π)^2×1.2-10]}

\implies{\sf T=0.4[16π^2×1.2-10]}

\implies{\sf T= 0.4[189.3-10] }

\implies{\sf T=0.4×179.3}

\implies{\bf \red{Tension(T)=71.7N }}

\huge\underline{\underline{\bf \orange{Answer-}}}

Tension in the string when the body

is at the top of the circle, is {\bf \red{71.7N}}.

Attachments:
Similar questions