Physics, asked by aviral58, 1 year ago

A body of mass m, moving along the positive x
direction is subjected to a resistive force F = Kv2
(where K is a constant and v the particle velocity).
If m = 10 kg, v = 10 m/s at t = 0, and K = 2 N
(m/s)2 the velocity when t = 2 s is:​

Answers

Answered by nirman95
4

Given:

A body of mass m, moving along the positive x

direction is subjected to a resistive force F = Kv².

(where K is a constant and v the particle velocity).

If m = 10 kg, v = 10 m/s at t = 0, and K = 2 N

(m/s)²

To find:

Velocity at t = 2 sec.

Calculation:

 \therefore \: F = k {v}^{2}

  =  >  \: a= \dfrac{ k {v}^{2} }{m}

  =  >  \: a= \dfrac{ 2 {v}^{2} }{10}

  =  >  \: a= \dfrac{  {v}^{2} }{5}

  =  >  \:  \dfrac{dv}{dt} = \dfrac{  {v}^{2} }{5}

  =  >  \:  \dfrac{dv}{ {v}^{2} } = \dfrac{ 1  }{5} \: dt

Integrating on both sides:

  \displaystyle =  >   \:  \int \dfrac{dv}{ {v}^{2} } = \dfrac{ 1  }{5} \:  \int \: dt

Putting limits:

  \displaystyle =  >   \:  \int_{10}^{v} \dfrac{dv}{ {v}^{2} } = \dfrac{ 1  }{5} \:  \int_{0}^{2}  \: dt

  =  >   \:   \bigg \{ -  \dfrac{1}{v}  \bigg \}_{10}^{v} = \dfrac{ 1  }{5} (2 - 0)

  =  >   \:   \bigg \{  \dfrac{1}{v}  \bigg \}_{v}^{10} = \dfrac{ 2 }{5}

  =  >   \:    \dfrac{1}{10} -  \dfrac{1}{v}    = \dfrac{ 2 }{5}

  =  >   \:     \dfrac{1}{v}    = \dfrac{1}{10}  -  \dfrac{ 2 }{5}

  =  >   \:     \dfrac{1}{v}    = \dfrac{1 - 4}{10}

  =  >   \:     \dfrac{1}{v}    = \dfrac{ - 3}{10}

 =  >  \: v =  - 3.33 \: m {s}^{ - 1}

So, final answer is:

 \boxed{ \red{ \bold{  \: v =  - 3.33 \: m {s}^{ - 1} }}}

Similar questions