Physics, asked by Anonymous, 10 months ago

a body starting from rest moves with uniform acceleration on a horizontal surface. the body covers 3 consecutive equal distances from beginning in time t1,t2, and t3 second. The ratio of t1:t2:t3 is?

Answers

Answered by Shubhendu8898
32

Answer:- 1:(\sqrt{2}-1):(\sqrt{3}-\sqrt{2})

Explanation:

Let the acceleration of particle be a , initial velocity be u and total distance be x.

We shall use 2nd equation of motion,

S = ut + 1/2at²

Since in this case, body starts from rest, we shall take,

u = 0

Then,

S = 1/2at²

For Case I:-

S = x/3

t = t₁

So we have from equation i)

\frac{x}{3}=\frac{1}{2}a(t_1)^2\\\;\\({t_1})^2=\frac{2x}{3a}\\\;\\t_1=\sqrt{\frac{2x}{3a}}

For case II:-

S = x/3 + x/3 =2x/3

t = t₁ + t₂

From equation i),

\frac{2x}{3}=\frac{1}{2}a(t_1+t_2)^2\\\;\\\frac{4x}{3a}=(t_1+t_2)^2\\\;\\(t_1+t_2)^2=\frac{4x}{3a}

t_1+t_2=\sqrt{\frac{4x}{3a}}

t_2=\sqrt{\frac{4x}{3a}}-t_1

\text{Putting value of}\;\;t_1

t_2=\sqrt{\frac{4x}{3a}}-\sqrt{\frac{2x}{3a}}

For case III:-

S = x/3 + x/3 + x/3 = x

t = t₁ + t₂ + t₃

Again from equation i)

x=\frac{1}{2}a(t_1+t_2+t_3)^2\\\;\\\frac{2x}{a}=(t_1+t_2+t_3)^2\\\;\\t_1+t_2+t_3=\sqrt{\frac{2x}{a}}\\\;\\\text{Putting vaules of}\;t_1\;\text{and}\;t_2\\\;\\\sqrt{\frac{2x}{3a}}+\sqrt{\frac{4x}{3a}}-\sqrt{\frac{2x}{3a}}+t_3=\sqrt{\frac{2x}{a}}\\\;\\\sqrt{\frac{4x}{3a}}+t_3=\sqrt{\frac{2x}{a}}\\\;\\t_3=\sqrt{\frac{2x}{a}}-\sqrt{\frac{4x}{3a}}

Now,

t_1:t_2:t_3\\\;\\=\sqrt{\frac{2x}{3a}}:\sqrt{\frac{4x}{3a}}-\sqrt{\frac{2x}{3a}}:\sqrt{\frac{2x}{a}}-\sqrt{\frac{4x}{3a}}\\\;\\=\sqrt{\frac{2}{3}}:(\sqrt{\frac{4}{3}}-\sqrt{\frac{2}{3}}):(\sqrt{2}-\sqrt{\frac{4}{3}})\\\;\\\text{Multiplying by}\sqrt{3}\\\;\\=\sqrt{2}:(2-\sqrt{2}):(\sqrt{6}-2)\\\;\\\text{Dividing by}\;\sqrt{2}\\\;\\=1:(\sqrt{2}-1):(\sqrt{3}-\sqrt{2})


Shubhendu8898: Edited at:- 30.09.2019 :
16:39
Answered by ShivamKashyap08
35

\huge{\underline{\underline{.........Answer.........}}}

\huge{\underline{Given:-}}

{S_1 = S_2 = S_3 = S}

\huge{\underline{Explanation:-}}

u = 0 m/s.

a = constant

  • Case-1

From second kinematic equation.

{S = S_1 = \frac {1}{2} a({t_1})^2}

{ \therefore t_1 =  \sqrt{ \frac{2S}{a}}}

  • Case-2

From second kinematic equation.

As the particle has travelled for the same distance two times the equation becomes.

{2S = \frac{1}{2}a({t_1 + t_2})^2}

{ \therefore t_1 + t_2 =   \sqrt{2}  \times  \sqrt{ \frac{2s}{a} } }

Now it becomes,

{t_2 = \sqrt{2} \times \sqrt{ \frac{2S}{a}} -  \sqrt{ \frac{2S}{a}}}

{t_2 = \sqrt{ \frac{2S}{a}} \times( \sqrt{2} - 1)}

  • Case-3

As the particle has travelled for the same distance three times the equation becomes.

{3S = \frac{1}{2}a({t_1 + t_2 + t_3})^2}

{ \therefore t_1 + t_2 + t_3 = \sqrt{3} \times \sqrt{ \frac{2S}{a}}}

Now it becomes,

{t_3 = (\sqrt{3} \times \sqrt{ \frac{2S}{a}}) -  \sqrt{ \frac{2S}{a}} - (\sqrt{ \frac{2S}{a}} \times( \sqrt{2} - 1))}

{t_3 = \sqrt{ \frac{2S}{a}}( \sqrt{3} - \sqrt{2})}

Now ratio

{t_1:t_2:t_3 = \sqrt{ \frac{2S}{a}}:\sqrt{ \frac{2S}{a}}( \sqrt{2} - 1): \sqrt{ \frac{2S}{a}}( \sqrt{3} - \sqrt{2})}

{t_1:t_2:t_3 = 1:( \sqrt{2} - 1):( \sqrt{3} - ( \sqrt{2})}

\huge{\boxed{\boxed{t_1:t_2:t_3 = 1:( \sqrt{2} - 1):( \sqrt{3} - ( \sqrt{2})}}}

Similar questions