Physics, asked by someoneyoudontneedto, 9 months ago

A body starts from rest and moving with constant acceleration. If it covers 20m in first 5 seconds then the distance covered by it in the next 5 seconds is                                                                     (a) 20m                      (b) 40m                                      (c) 60m                                  (d)80m

fastest answer will be marked the brainliest​

Answers

Answered by Anonymous
15

Answer :

➥ The distance covered in next 5 sec = 20 m

Given :

➤ Distance covered in first 5 sec = 20 m

➤ Time taken by the body (t) = 5 sec

To Find :

➤ The distance covered in next 5 sec = ?

Solution :

Distance covered 20 m in 5 sec

From second equation of motion

 \tt{: \implies s = ut +  \dfrac{1}{2} a {t}^{2} }

 \tt{: \implies 20 = 0 \times 5 +  \dfrac{1}{2} \times a \times 5 \times 5 }

 \tt{: \implies 20 = 0 +  \dfrac{1}{2}  \times a  \times  25}

 \tt{: \implies 20 =  0 +  \dfrac{1}{2}  \times 25a}

 \tt{: \implies 20 =  \dfrac{25a}{2} }

 \tt{: \implies 40 = 25a}

\tt{: \implies  \cancel{\dfrac{40}{25}} = a}

 \tt{: \implies  \purple{ \underline{ \overline{ \boxed{ \green{ \bf{ \:  \: a =  \dfrac{8}{5} \: m/s^2 \:  \: }}}}}}}

Now ,

Distance covered in next 5 seconds.

From second equation of motion

 \tt{: \implies s = ut +  \dfrac{1}{2}a {t}^{2}}

 \tt{: \implies s =  0 \times 5 +  \dfrac{1}{ \cancel{2}}  \times  \dfrac{ \cancel{8}}{ \cancel{5}}  \times  \cancel{5} \times 5}

 \tt{: \implies s = 0 + 1 \times 4 \times 5}

 \tt{: \implies s = 0 + 1 \times 20}

 \tt{: \implies s = 0 + 20}

 \tt{: \implies  \green{ \underline{ \overline{ \boxed{ \purple{ \bf{ \:  \: s = 20 \: m \:  \: }}}}}}}

Hence, the distance covered in next 5 second is 20 m.

▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬

Some releted equations :

⪼ s = ut + ½ at²

⪼ v = u + at

⪼ v² = u² + 2as

▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬▭▬

Similar questions