Physics, asked by monishy676, 3 days ago

A body starts from rest and travels with an acceleration of 2 m/s2 if the displacement made by it is 25 m the time to travel t is

Answers

Answered by Mymissanad123
0

Answer:

abody starts from rest and travels for t second with uniform acceleration of 2 m/s². If the displacement made by it is 16 m, what is the time of travel t?

Answered by Anonymous
9

Answer:

Solution :

As per the provided information in the question, we have :

  • ✧ Initial velocity (u) = 0 m/s
  • ✧ Acceleration (a) = 2 m/s²
  • ✧ Displacement (s) = 25 m.

We need to calculate the time raken by body.

Here's the required formula to find the time :

{\longrightarrow{\pmb{\sf{s = ut +  \dfrac{1}{2}a{t}^{2}}}}}

  • s denotes distance/displacement
  • u denotes initial velocity
  • a denotes acceleration
  • t denotes time

Finding the time taken by using second equation of motion :

{\longrightarrow{\sf{s = ut +  \dfrac{1}{2}a{t}^{2}}}}

{\longrightarrow{\sf{25 = (0)(t) +  \dfrac{1}{2} \times 2 \times {t}^{2}}}}

{\longrightarrow{\sf{25 = 0 \times t +  \dfrac{1}{2} \times 2 \times {t}^{2}}}}

{\longrightarrow{\sf{25 = 0  +  \dfrac{1}{2} \times 2 \times {t}^{2}}}}

{\longrightarrow{\sf{25 = 0  +  \dfrac{1}{\cancel{2}} \times  \cancel{2} \times {t}^{2}}}}

{\longrightarrow{\sf{25 = 0  +  1 \times {t}^{2}}}}

{\longrightarrow{\sf{25 - 0 =  1 \times {t}^{2}}}}

{\longrightarrow{\sf{25 =  {t}^{2}}}}

{\longrightarrow{\sf{{t}^{2} = 25}}}

{\longrightarrow{\sf{t = \sqrt{25} }}}

{\longrightarrow{\sf{t = \sqrt{5 \times 5} }}}

{\longrightarrow{\sf{\underline{ \underline{\red{t =5 \: sec}}}}}}

Henceforth, the time travel is 5 second.

Learn More :

  • ✧ Velocity

{\longrightarrow{\small{\underline{\boxed{\sf{\purple{v = u  +  at}}}}}}}

  • ✧ Displacement with positive accelerations

{\longrightarrow{\small{\underline{\boxed{\sf{\purple{s= ut  +  \dfrac{1}{2}{at}^{2}}}}}}}}

  • ✧ Displacement with negative acceleration

{\longrightarrow{\small{\underline{\boxed{\sf{\purple{s= ut - \dfrac{1}{2}{at}^{2}}}}}}}}

  • ✧ Displacement knowing initial and final speeds

{\longrightarrow{\small{\underline{\boxed{\sf{\purple{s= \dfrac{1}{2}\big(u + v \big)t}}}}}}}

  • ✧ Velocity squared

{\longrightarrow{\small{\underline{\boxed{\sf{\purple{{v}^{2} =  {u}^{2} + 2as}}}}}}}

\underline{\rule{220pt}{4pt}}

Similar questions