Physics, asked by testsix3807, 9 months ago

A body starts from rest what is what is the ratio of the distance travelled by the body during fourth and third second

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{s_{4}:s_{3}=7:5}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Initial \: velocity = 0 \: m/s \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  \frac{ s_{4} }{ s_{3} }  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies   s_{n} = u +  \frac{a}{2} (2n - 1) \\  \\ \tt:  \implies  s_{4} = 0 +  \frac{a}{2} (2 \times 4 - 1) \\  \\ \tt:  \implies s_{4} =  \frac{a}{2} (8 - 1) \\  \\ \tt:  \implies s_{4} = \frac{7a}{2}  -  -  -  -  - (1) \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies   s_{n} = u +  \frac{a}{2} (2n - 1) \\  \\ \tt:  \implies  s_{3} = 0 +  \frac{a}{2} (2 \times 3 - 1) \\  \\ \tt:  \implies s_{3} =  \frac{a}{2} (6 - 1) \\  \\ \tt:  \implies s_{3} = \frac{5a}{2}  -  -  -  -  - (2) \\  \\  \bold{For \: Ratio : } \\ \tt:  \implies  \frac{ s_{4} }{ s_{3} }  =  \frac{ \frac{7a}{2} }{ \frac{5a}{2} }  \\  \\ \tt:  \implies  \frac{ s_{4} }{ s_{3} }  =  \frac{7a}{2}  \times  \frac{2}{5a}  \\  \\ \tt:  \implies  \frac{ s_{4} }{ s_{3} }  =   \frac{7}{5}  \\  \\  \green{\tt:  \implies  { s_{4} } : { s_{3} }  = 7 : 5}

Similar questions