a body starts moving up an inclined plane of angle 30 degree with an initial kinetic energy of 20J . the coefficient of friction is 1/root 3. the work done against friction before the body comes to rest is
1) 5J
2) 7J
3) 10J
4) 15J
Answers
answer : option (1) 5J
explanation : inclination angle of plane , Φ = 30°
coefficient of friction, μ = 1/√3
initial kinetic energy of body , K.E = 20J
let mass of body is m
so, K.E = 1/2 mu²
or, 20 = mv²
or, v = √{20/m}
using formula, v² = u² + 2as
or, 0 = (20/m) + 2as .....(1)
here, a is acceleration. let's find it.
body moves upward, so net force = -(weight + frictional force)
or, ma = -(mgsinΦ + μmgcosΦ)
or, a = -g(sinΦ + μ cosΦ) [ downward direction along plane ]
putting a in equation (1),
20/m =2g(sinΦ + μ cosΦ)s
or, s = 20/2g(sinΦ + μ cosΦ) .....(2)
now, workdone due to frictional force, W = (μmgcosΦ)s
from equation (2),
= 20μgcosΦ/2g(sinΦ + μ cosΦ)
= 10μcosΦ/(sinΦ + μ cosΦ)
= 10 × 1/√3 × cos30°/(sin30° + 1/√3 × cos30°)
= 5/(1/2 + 1/2)
= 5 J
hence, option (1) is correct choice