a body starts with initial velocity along a staight line .after 3 s it is found to be a distance of 15 m from the startung point . at 4s it is at starting point what is the initial velocity of the body assume constant accelearation
Answers
Answer:
- The initial velocity (u) of the body will be 20 m/s.
Given:
- Let the Initial velocity be ' u '
- Let the constant acceleration be ' a '.
Explanation:
Case - 1
From second kinematic equation.
⇒ S = u t + 1 / 2 a t²
Here,
- S Denotes Displacement.
- u Denotes Initial velocity.
- t Denotes time.
- a Denotes Acceleration.
Now,
⇒ S = u t + 1 / 2 a t²
Substituting the values,
⇒ 15 = u × 3 + 1 / 2 × a × (3)²
∵ [ S = 15 m, t = 3 sec]
⇒ 15 = 3 u + 1 / 2 × a × 9
Multiplying by 2 on both sides.
⇒ 2 × 15 = 2 × 3 u + 2 ×(1 / 2 × a × 9)
⇒ 30 = 6 u + a × 9
⇒ 30 = 6 u + 9 a
⇒ a = ( 30 - 6 u ) / 9 ____ [ 1 ]
Case - 2
From second kinematic equation.
⇒ S = u t + 1 / 2 a t²
Here,
- S Denotes Displacement.
- u Denotes Initial velocity.
- t Denotes time.
- a Denotes Acceleration.
Now,
⇒ S = u t + 1 / 2 a t²
Substituting the values,
Since, the particle returns to its Initial position then the Displacement will be Zero.
⇒ 0 = u × 4 + 1 / 2 × a × (4)²
∵ [ S = 0 m, t = 4 sec]
⇒ 0 = 4 u + 1 / 2 × a × 16
Multiplying by 2 on both sides.
⇒ 0 × 2 = 2 × 4 u + 2 × (1 / 2 × a × 16)
⇒ 0 = 8 u + a × 16
⇒ 0 = 8 u + 16 a
⇒ 16 a = - 8 u
Substituting the value of acceleration from equation [ 1 ]
⇒ 16 × ( 30 - 6 u) / 9 = - 8 u
⇒ ( 30 - 6 u) / 9 = - 8 u / 16
⇒ ( 30 - 6 u) / 9 = - u / 2
Cross - multiplying,
⇒ 2 × ( 30 - 6 u) = 9 × - u
⇒ 60 - 12 u = - 9 u
⇒ 60 = - 9 u + 12 u
⇒ 3 u = 60
⇒ u = 60 / 3
⇒ u = 20
⇒ u = 20 m/s.
∴ The initial velocity (u) of the body will be 20 m/s.