Physics, asked by saurabhsunil1478, 10 months ago

A body whose moment of inertia is 3 kg metre square is at rest it is rotating for 20 seconds with a moment of force 6 newton metre find the angular displacement of body

Answers

Answered by ShivamKashyap08
8

Answer:

  • Angular Displacement (θ) = 400 Radians.

Given:

  1. Moment of Inertia (I) = 3 Kg/m².
  2. Time Period (T) = 20 Sec.
  3. Torque (τ) = 6 N-m.

Explanation:

\rule{300}{1.5}

From the Relation we Know,

\large\bigstar \;{\boxed{\tt \tau = I \alpha}}

\bold{Here}\begin{cases}\tau \; \text{Denotes Torque} \\ \text{ I Denotes Moment of Inertia} \\ \alpha \; \text{Denotes angular Acceleration}\end{cases}

Now,

\large{\boxed{\tt \tau = I \alpha}}

Substituting The Values.

\large{\tt \hookrightarrow 6 \; Nm = 3 \; Kg/m^2 \times \alpha}

\large{\tt \hookrightarrow 6 = 3 \times \alpha}

\large{\tt \hookrightarrow \alpha = \dfrac{6}{3}}

\large{\tt \hookrightarrow \alpha = \cancel{\dfrac{6}{3}}}

\large{\underline{\boxed{\tt \alpha = 2 \; Rad/sec^2}}}

\rule{300}{1.5}

\rule{300}{1.5}

Now, From Angular Kinematic equation

\large\bigstar \;{\boxed{\tt \theta = \omega t + \dfrac{1}{2}\alpha t^2}}

\bold{Here}\begin{cases}\omega \; \text{Denotes Angular Velocity} \\ \text{ t Denotes Time taken} \\ \alpha \; \text{Denotes angular Acceleration} \\ \theta \; \text{Denotes Angular Displacement}\end{cases}

Now,

\large{\boxed{\tt \theta = \omega t + \dfrac{1}{2}\alpha t^2}}

Substituting The Values.

\large{\tt \hookrightarrow \theta = 0 \times t + \dfrac{1}{2} \times 2 \times (20)^2}

  • Initial Angular Velocity is Zero.

\large{\tt \hookrightarrow \theta = 0 + \dfrac{1}{2} \times 2 \times 400}

\large{\tt \hookrightarrow \theta = \dfrac{2}{2} \times 400}

\large{\tt \hookrightarrow \theta = \cancel{\dfrac{2}{2}} \times 400}

\large{\tt \hookrightarrow \theta = 1 \times 400}

\huge{\boxed{\boxed{\tt \theta = 400 \; Rad}}}

Angular Displacement (θ) is  400 Radians.

\rule{300}{1.5}

Similar questions