a box contains 500 candles each of length 10cm and radius 14mm . find the volume of wax in the box . (π = 22/7)
Answers
Step-by-step explanation:
22000 cm³ is the volume of wax in the container.
Answer:
Volume of a cuboid =(Length×Breadth×Height) cubic units
Total surface area =2(lb+bh+lh) sq units
Lateral surface area =[2(l+b)×h] sq units
(i) Length = 22 cm, breadth = 12 cm, height = 7.5 cm
Volume =(Length×Breadth×Height) = (22×12×7.5)=1980 cm3
Total surface area =2(lb+bh+lh)= 2[(22×12)+(22×7.5)+(12×7.5)]=2[264+165+90]=1038 cm2
Lateral surface area =[2(l+b)×h]=2(22+12)×7.5=510 cm2
(ii) Length = 15 m, breadth = 6 m, height = 9 dm = 0.9 m
Volume =(Length×Breadth×Height) = (15×6×0.9)=81 m3
Total surface area=2(lb+bh+lh) = 2[(15×6)+(15×0.9)+(6×0.9)]=2[90+13.5+5.4]=217.8 m2
Lateral surface area =[2(l+b)×h]=2(15+6)×0.9=37.8 m2
(iii) Length = 24 m, breadth = 25 cm = 0.25 m, height = 6 m
Volume =(Length×Breadth×Height) = (24×0.25×6)=36 m3
Total surface area=2(lb+bh+lh) = 2[(24×0.25)+(24×6)+(0.25×6)]=2[6+144+1.5]=303 m2
Lateral surface area =[2(l+b)×h]=2(24+0.25)×6=291 m2
(iv) Length = 48 cm = 0.48 m, breadth = 6 dm = 0.6 m, height = 1 m
Volume =(Length×Breadth×Height) = (0.48×0.6×1)=0.288 m3
Total surface area =2(lb+bh+lh)= 2[(0.48×0.6)+(0.48×1)+(0.6×1)]=2[0.288+0.48+0.6]=2.736 m2
Lateral surface area =[2(l+b)×h]=2(0.48+0.6)×1=2.16 m2
Step-by-step explanation: