Math, asked by Anonymous, 1 day ago

A box has the following no. of balls :-

Red balls = 10
Green balls = 7
Blue balls = 12
Orange balls = 16
Black balls = 4


Find the Probability of :-

i) Getting a red ball .
ii) Getting a non blue ball .
iii) Getting a orange or green ball .
iv) Getting a Black ball .


Hoping for answers from Best Users . :)
# No Spams​

Answers

Answered by HumairaSultana
4

Step-by-step explanation:

probability=favourable outcome/ total outcome

total outcome=10+7+12+16+4=49

(I) probability of getting red ball =10/49

(ii) probability of getting non blue ball =37/49

(iii) probability of getting orange or green ball =19/49

(iv) probability of getting black ball =4/49

Answered by Anonymous
43

Given :

A box has the following no. of balls :-

  • Red Balls = 10
  • Green Balls = 7
  • Blue Balls = 12
  • Orange Balls = 16
  • Black Balls = 4

 \\ \rule{200pt}{3pt}

To Find :

Find the probability of getting :-

  • i) A Red Ball
  • ii) Non blue ball
  • iii) Orange or green ball
  • iv) Black ball

 \\ \rule{200pt}{3pt}

Solution :

~ Formula Used :

 {\pmb{\color{darkblue}{\dashrightarrow}} \; \; {\pink{\sf{ Probability = \dfrac{Favourable \; Outcomes}{Total \; Outcomes} }}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Probability of getting Red ball :

 \; {:\implies{\qquad{\sf{ Probability = \dfrac{Favourable \; Outcomes}{Total \; Outcomes} }}}} \\

 \; {:\implies{\qquad{\sf{ Probability = \dfrac{10}{10 + 7 + 12 + 16 + 4} }}}} \\

 \; {:\implies{\qquad{\sf{ Probability = \dfrac{10}{49} }}}} \\

 \; {:\implies{\qquad{\orange{\sf{ Probability{\small_{(Red \; Ball)}} = \dfrac{10}{49} }}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Probability of getting Non blue ball :

 \; {\longmapsto{\qquad{\sf{ Probability = \dfrac{Favourable \; Outcomes}{Total \; Outcomes} }}}} \\

 \; {\longmapsto{\qquad{\sf{ Probability = \dfrac{10 + 7 + 16 + 4}{10 + 7 + 12 + 16 + 4} }}}} \\

 \; {\longmapsto{\qquad{\sf{ Probability = \dfrac{37}{10 + 7 + 12 + 16 + 4} }}}} \\

 \; {\longmapsto{\qquad{\sf{ Probability = \dfrac{37}{49} }}}} \\

 \; {\longmapsto{\qquad{\green{\sf{ Probability{\small_{(Non \; Blue \; Ball)}} = \dfrac{37}{49} }}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Probability of getting Orange or green ball :

 \; {:\implies{\qquad{\sf{ Probability = \dfrac{Favourable \; Outcomes}{Total \; Outcomes} }}}} \\

 \; {:\implies{\qquad{\sf{ Probability = \dfrac{16 + 7}{10 + 7 + 12 + 16 + 4} }}}} \\

 \; {:\implies{\qquad{\sf{ Probability = \dfrac{16 + 7}{49} }}}} \\

 \; {:\implies{\qquad{\sf{ Probability = \dfrac{23}{49} }}}} \\

 \; {:\implies{\qquad{\red{\sf{ Probability{\small_{(Orange \; or \; green \; Ball)}} = \dfrac{23}{49} }}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Probability of getting black ball :

 \; {\longmapsto{\qquad{\sf{ Probability = \dfrac{Favourable \; Outcomes}{Total \; Outcomes} }}}} \\

 \; {\longmapsto{\qquad{\sf{ Probability = \dfrac{4}{10 + 7 + 12 + 16 + 4} }}}} \\

 \; {\longmapsto{\qquad{\sf{ Probability = \dfrac{4}{49} }}}} \\

 \; {\longmapsto{\qquad{\purple{\sf{ Probability{\small_{(Black \; Ball)}} = \dfrac{4}{49} }}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Therefore :

❝ Probability of getting Red ball is 10/49 , Probability of getting a non blue ball is 37/49 , the probability of getting a Orange or green ball is 23/49 and the probability of getting a Black ball is 4/49 . ❞

 \\ {\underline{\rule{300pt}{9pt}}}

♥️  {\orange{♪}}{\purple{♪}}{\green{♪}}

Similar questions