Math, asked by riskylathwal6022, 6 hours ago

A boy read 2/7th of a book on the first day and 4/5th of the remainder on the another day. If there were 12 pages unread, how many pages did the book contains?

Answers

Answered by merinmathew232
2

Answer:

84 pages

Step-by-step explanation:

To find :

Total pages of the book= ?

Solution :

Let the total pages of the book = \italics{ \bold{x} }

Pages read on 1st day = \bold{\dfrac{2}{7} \ x}

Pages read on 2nd day = \bold{\dfrac{4}{5} \ of \ remaining \ pages}

                                       = \bold{\dfrac{4}{5} \ X  \ (x- \frac{2}{7} x)}

                                       = \bold{\dfrac{4}{5} \ }  \bold{x}  \bold{\ (\frac{7x - 2x}{7})}

                                       = \bold{\dfrac{4}{5} \ }  \bold{x}  \bold{\ \dfrac{5x}{7}}

                                       = \bold{\dfrac{4}{7}}\bold{x}

Total pages read = \bold{\dfrac{2}{7} \ x} + \bold{\dfrac{4}{7} \ x}

                            = \bold{\dfrac{6}{7} \ x}  

No. of unread pages = \bold{x - \dfrac{6}{7} \ x}

⇒                               12 = \bold{\ (\dfrac{7x - 6x}{7})}

⇒                               12 = \bold{\ \dfrac{x}{7}}

⇒                              x = 12 × 7

⇒                              x = 84 pages

∴  Total pages of the book = 84 pages

Similar questions