Math, asked by Anonymous, 6 months ago

A boy standing on a horizontal plane finds a bird flying at a distance of 100 m from him at an elevation of 30°. A girl standing on the roof of a 20 m high building, finds the elevation of the same bird to be 45°. The boy and the girl are on the opposite side of the bird. Find the distance of the bird from the girl. (Given√2 = 1414)

Answers

Answered by Anonymous
19

 \boxed{\boxed{ \overline{ \underline{ \bf \red{SOLUTION ☻}}}}}

 \rm \: Let \: C \: be \: the \: position \: of \: Bird, \: and \: B \: and \: E \: are \: the \: position    \: of \: boy \: and \: girl \: respectively.

 \rm \: Let \: the \: height \: of \: building \: be \: DE \:  = 20 \: m

 \rm \: Let \: the \: distance \: of \: girl \: from \: bird \: be \: EC =  x \: m

 \rm \: In \: right  \: \triangle \: BAC,

 \rm \: sin \: 30 \degree =  \frac{AC}{BC}

  \longrightarrow \:   \rm \: \frac{1}{2} =  \frac{AC}{100}

 \longrightarrow \:  \rm \: AC =  \frac{100}{2} = 50 \: m

  \rm \: Now, \: CF =  AC - AF

 \rm = 50 - 20 = 30 \: m \:  \:  \:  \:  \:  \:  \: ( \because \: AF = DE)

 \rm \: In \: right  \: \triangle \: EFC,

 \rm \: sin \:  45\degree  =  \frac{CF}{CE}

 \longrightarrow \:  \rm \frac{1}{ \sqrt{2} } =  \frac{30}{x}

 \longrightarrow \:  \rm \: x = 30 \times  \sqrt{2}

 \rm \:  \:  \:   \:  \: \:  \:  \:  \:  \:  \:   \: \:  = 30 \times 1.414

 \rm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 42.42 \: m

 \rm \: Hence, \: the \: distance \: of \: girl \: from \: bird \: is  \:  \red{42.42 \: m.}

Attachments:
Similar questions