Physics, asked by saikar, 6 months ago


A brass wire of length 1m and area of cross section 1mm^2 is stretched by applying a force of 20N, then work done per unit volume of the wire is
[Ybrass = 0.91 x 1011 N/m²]
(A) 2198J/m3
(B) 1049 J/m3
(C) 4422J/m3
(D) 4521 J/m3​

Answers

Answered by paul37817
2

Answer:

2198J/m3

Explanation:

work done per unit volume(strain energy)=stress²/2y

stress²=(F/A)²

(20/10^-6)²=4 x 10^15

strain energy=4 x 10^15 /2 x 0.91 x 10^11

=2197.8021≈2198

Answered by KaurSukhvir
1

Answer:

Work done per unit volume of the wire is equal to 2198J/m³.

Therefore, the option (A) is correct.

Explanation:

Given: The length of the brass wire l=1m

Area of cross section of wire, A=1mm^{2}A=10^{-3}m^{2}

Force applied to stretch the brass wire, F=20N

Stress (σ) =Force/Area

∴  \sigma=\frac{F}{A}

⇒   Stress  , \sigma=\frac{20N}{10^{-6}m^{2}}=2*10^{7}Nm^{-2}

Given, the Young's module of brass, Y_{brass}=0.91*10^{11}Nm^{-2}

Work done per unit volume, W=\frac{(Stress)^{2}}{2Y}

⇒    W=\frac{(2*10^{7})^{2}}{2*0.91*10^{11}}

⇒    W=2.1978*10^{3}J

∴     W=2197.8Jm^{-3}\\W=2198Jm^{-3}

Therefore, the work done per unit volume is 2198J/m³.

Similar questions