Math, asked by aravahuja968, 9 months ago

a = btanx, find asin2x + bcos2x

Answers

Answered by sckbty72
1

Answer:

Step-by-step explanation:

a = btanx

tanx = a/b

tan2x = (2tanx)/(1-tan^2x)

         = (2a/b)/(1-a^2/b^2)

         = 2ab/b^2-a^2

∴ sin2x =  (2ab)/\sqrt{(2ab)^2 + (b^2 - a^2)^2}

            =   (2ab)/(a^2+b^2)

and cos2x = (b^2 - a^2)/\sqrt{(2ab)^2 + (b^2 - a^2)^2}

                   = (b^2 - a^2)/(b^2 + a^2)

So, asin2x + bcos2x

   = (2a^2b)/(a^2+b^2) + (b^3 - a^2b)/(b^2 + a^2)

   = [b(a^2 + b^2)]/(a^2 + b^2)

   = b.

Hope it helps!!!!

Similar questions