Social Sciences, asked by Mathematics001, 9 months ago

A bucket of height 8 cm with radii of its upper and lower ends are 9 cm and 3 cm respectively. Then slant height of bucket is​

Answers

Answered by Anonymous
9

\tt\pink{\underline{\underline{Given}}}

→Height of bucket is 8 cm.

→Radius of its upper end is 9 cm.

→Radius of lower end is 3 cm.

\tt\pink{\underline{\underline{To\:find}}}

→ Slant height = ?

\tt\pink{\underline{\underline{Formula\:used}}}

→l =  \sqrt{h}^{2}  + ( r_{1} -  r_{2})^{2}

\tt\pink{\underline{\underline{Solution}}}

→l =  { \sqrt{h} }^{2}  + ( r_{1} -  r_{2})^{2}  \\ →l =  { \sqrt{8} }^{2}  + (9 - 3)^{2}  \\ →l =  \sqrt{64}  + 36 \\ →l =  \sqrt{100}  \\ →l = 10 \: cm

\tt{Hence\:answer\:is}\fbox{10\:cm}

Answered by raju439
2

\tt{\underline{\underline{Given}}}

→Height of bucket is 8 cm.

→Radius of its upper end is 9 cm.

→Radius of lower end is 3 cm.

\tt{\underline{\underline{To\:find}}}

→ Slant height = ?

\tt{\underline{\underline{Formula\:used}}}

→l =  \sqrt{h}^{2}  + ( r_{1} -  r_{2})^{2}

\tt{\underline{\underline{Solution}}}

→l =  { \sqrt{h} }^{2}  + ( r_{1} -  r_{2})^{2}  \\ →l =  { \sqrt{8} }^{2}  + (9 - 3)^{2}  \\ →l =  \sqrt{64}  + 36 \\ →l =  \sqrt{100}  \\ →l = 10 \: cm

\tt{Hence\:answer\:is}\fbox{10\:cm}

Similar questions