Physics, asked by shivanimaske3998, 1 year ago

A bulk specimen of metal in the super conducting state exhibits perfect _____ with magnetic induction b = 0

Answers

Answered by itzJitesh
0

Answer:

A magnet levitating above a high-temperature superconductor, cooled with liquid nitrogen. Persistent electric current flows on the surface of the superconductor, acting to exclude the magnetic field of the magnet (Faraday's law of induction). This current effectively forms an electromagnet that repels the magnet.

File:Meissner effect.ogvPlay media

Video of the Meissner effect in a high-temperature superconductor (black pellet) with a NdFeB magnet (metallic)

A high-temperature superconductor levitating above a magnet

Superconductivity is the set of physical properties observed in certain materials, wherein electrical resistance vanishes and from which magnetic flux fields are expelled. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source.[1][2][3][4]

This phenomenon was discovered by Dutch physicist Heike Kamerlingh Onnes on April 8, 1911, in Leiden. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical mystery. It is characterized by the Meissner effect, the complete ejection of magnetic field lines from the interior of the superconductor during its transitions into the superconducting state. The occurrence of the Meissner effect indicates that superconductivity cannot be understood simply as the idealization of perfect conductivity in classical physics.

In 1986, it was discovered that some cuprate-perovskite ceramic materials have a critical temperature above 90 K (−183 °C).[5] Such a high transition temperature is theoretically impossible for a conventional superconductor, leading the materials to be termed high-temperature superconductors. The cheaply available coolant liquid nitrogen boils at 77 K, and thus the existence of superconductivity at higher temperatures than this facilitates many experiments and applications that are less practical at lower temperatures.

Answered by AnmolRaii
0

Electromagnetic or magnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction.

Similar questions