Physics, asked by rs210, 1 year ago

A bullet fired at angle 30° with horizontal hits the
ground 3 m away. What can be the approximate
maximum range of this projectile?

Answers

Answered by Anonymous
11

\huge\underline\blue{\sf Answer:}

\large\red{\boxed{\sf R_{max}=3.6m }}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • Angle \sf{(\theta)=30°}

  • Range (R) = 3m

\large\underline\pink{\sf To\:Find: }

  • Maximum Range \sf{(R_{max})=?}

━━━━━━━━━━━━━━━━━━━━━━━━

Range (R) :

\large{\boxed{\sf R=\frac{u^2sin2\theta}{g}}}

\large\implies{\sf u=\sqrt{\frac{Rg}{sin2\theta}}}

\large\implies{\sf u=\sqrt{\frac{3×10}{sin60°}} }

\large\implies{\sf u=\sqrt{\frac{30×2}{\sqrt{3}}} }

\large\implies{\sf u=\sqrt{\frac{60}{\sqrt{3}}}}

\large\implies{\sf u=\sqrt{35.2}}

\large\implies{\sf u ≈6m/s}

For Maximum Range :-

\large{\boxed{\sf R_{max}=\frac{u^2}{g}}}

\large\implies{\sf R_{max}=\frac{36}{10}}

\large\implies{\sf R_{max}=3.6m}

\large\red{\boxed{\sf R_{max}=3.6m }}

Hence ,

Maximum range of this projectile is 3.6m

Answered by Anonymous
0

See the above answer to know the answer!!!

Similar questions