Physics, asked by gudimetlarishi713, 1 year ago

A bullet of fire for a gun with muzzle velocity of 200 metre per second of angle of 60 to the horizontal find the range and maximum height

Answers

Answered by ShivamKashyap08
4

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

u = 200 m/s.

{ \theta = 60 \degree}

\huge{\bold{\underline{Explanation:-}}}

Case-1

Range is the maximum distance covered in horizontal direction.

\large{\bold{R = \frac{u^2 \sin 2 \theta}{g}}}

Substituting the values.

\large{R = \frac{(200)^2 \sin  2 \times 60}{g}}

\large{R = \frac{40000 \: \sin 120}{10}}

\large{R = 4000  \times  \frac{ \sqrt{3} }{2} }

\large{R = { \cancel{4000} \times \frac{ \sqrt{3}}{ \cancel{2}}}}

\large{R = 2000 \sqrt{3} \: m}

\huge{\boxed{\boxed{R = 2000 \sqrt{3} \: m}}}

Case-2

Maximum Height is the maximum distance covered in vertical direction.

\large{\bold{R = \frac{u^2 \sin^2 \theta}{2g}}}

Substituting the values.

\large{R = \frac{(200)^2 \sin  60}{2 \times 10}}

\large{R = \frac{40000 \: \sin 60}{20}}

\large{R = {2000 \times \frac{ \sqrt{3}}{2}}}

\large{R = { \cancel{2000} \times \frac{ \sqrt{3}}{ \cancel{2}}}}

\large{R = 1000 \sqrt{3} \: m}

\huge{\boxed{\boxed{R = 1000 \sqrt{3} \: m}}}

So,the Range is 20003 meters and Maximum height is 10003 meters .

Similar questions