Physics, asked by joy5664, 6 months ago

A bus of starting from rest moves with uniform aceelaration of 0.5 m/s2 for 2 minutes
Find (a) Speed
(b) Distance

Answers

Answered by Anonymous
6

\;\;\underline{\textbf{\textsf{ Given:-}}}

• Initial velocity, u = 0 m/s

• Acceleration, a = 0.5 m/s²

• Time, t = 2 min or 120 sec

\;\;\underline{\textbf{\textsf{ To Find :-}}}

•Final velocity, v

•Distance travelled, d

\;\;\underline{\textbf{\textsf{ Solution :-}}}

\underline{\:\textsf{ Here, we know the formula  :}}

\tt{v = u + at}

(\bf 1st\:  equation  \: of  \: motion)

\underline{\:\textsf{Putting the given values   :}}

\tt{ \longrightarrow v = 0 + 0.5 \times 120}

\tt{\longrightarrow v = 0 + 60}

\bf{ \longrightarrow v = 60 \: m/s}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\:\textsf{Again,  we know that  :}}

\tt{s = ut +  \dfrac{1}{2}a {t}^{2}  }

(\bf 2nd \:  equation  \: of  \: motion)

\underline{\:\textsf{Now,  put the given values   :}}

\tt{ \longrightarrow s = 0 \times 60 +  \dfrac{1}{ \cancel{2}} \times 0.5 \times  \cancel{60} \times 60 }

\tt{ \longrightarrow s =  0 + 1 \times 0.5 \times 35 \times 60}

\tt{\longrightarrow  s = 0 + 0.5 \times 35 \times 60}

\bf{ \longrightarrow s = 1050 \: m}

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{Final velocity of the bus is \textbf{60m/s}}}.

\underline{\textsf{ The distance travelled by a bus is \textbf{1050m}}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\;\;\underline{\textbf{\textsf{ Know  More:-}}}

(\bf 1st\:  equation  \: of  \: motion)

\boxed{\sf v = u + at}

(\bf 2nd \:  equation  \: of  \: motion)

\boxed{\sf s = ut + \frac{1}{2} at^{2}}

(\bf 3rd \:  equation  \: of  \: motion)

\boxed{\sf v^{2} - u^{2} = 2as}

Where,

›› s = Distance Covered

›› u = Initial Velocity

›› t = Time taken

›› v = Final Velocity

›› a = Acceleration

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by falgunig402
1

Answer:

thank you so much for free points

Explanation:

I really need points

Similar questions