Math, asked by kalpi24, 1 year ago

a businessman bought some items for rs 7500. he kept 5 items for himself and sold the remaining items at a profit of rs 30 per item from the amount received in this deal he could buy 4 more items find the original price for each item.​

Answers

Answered by Anonymous
22
_______________________


\sf{\underline{Given:}}


\sf{No.\:of\:items\:bought} =\:x

\sf{Price\:per\:item}=\:y

\sf{Total\:amount\:paid}  = x \times y = xy = 7500

y = \frac{7500}{x}


\sf{Total\:items\:sold} = (x - 5)


\sf{Price\:of\:each\:item}  = (y + 30)


\sf{Total\:revenue\:received}  = (x - 5) \times (y + 30)


\sf{\underline{Since\:he\:can\:buy,}}

\sf{4\:more\:items\:from\:his\:revenue.}


(x - 5)(y + 30) - 7500 = 4 \times y


(x - 5)( \frac{7500}{x} + 30) - 7500 = 4y


(x - 5)( \frac{7500 + 30x}{x} ) - 7500 = 4y


(x - 5)(7500 + 30x) - 7500x = 4xy


7500x + 30 x^{2} - 37500 - 150x - 7500x = 4xy


 {30x}^{2} + 7500x - 150x - 7500x - 37500 = 4(7500)


 {30x}^{2} - 150x - 37500 - 30000 = 0


30x^{2} - 150x - 67500 = 0


30( {x}^{2} - 5x - 2250) = 0


 {x}^{2} - 5x - 2250 = 0


\sf{\underline{Solving\:the\:quadratic\:equation}}

\sf{\underline{We\:get,}}

x = - 45 \: \: \: \: \: x = 50


\sf{\underline{Since\:the\:cost\:cannot\:be\:negative,}}

x = - 45 is discarded.


\sf{\underline{So,}}

x = 50


\sf{\underline{Therefore,}}

\sf{50\:items\:were\:bought.}


\sf{The\:price\:per\:item}  \frac{7500}{50} = 150


_______________________
Similar questions