Math, asked by vashali12345, 3 months ago

(a
(c) 40% of it is 500 km.
5. Find the whole quantity if
(a) 5% of it is 600. (b) 12% of it is 1080.
(d) 70% of it is 14 minutes.
(e) 8% of it is 40 litres.

Answers

Answered by pankajnafria75
10

Answer:

c) 40\100×500

= 40× 5 = 200 km

in other problems

let the whole quantity = x

and for removing % devide the number by 100

Answered by Eutuxia
11

Before, finding the answer. Let's find out how we can find the answer.

  • To find the whole quantity, we must use the formula of :

\boxed{ \sf Whole \: Quantity = \frac{ (x \: of \:  x \%) \times 100 }{percent}  }

____________________

Find the whole quantity if :

(a) 5% of it is 600.

Given :

  • 5% of it is 600

To find :

  • whole quantity

Solution :

{ \sf Whole \: Quantity = \dfrac{ (x \: of \:  x \%) \times 100 }{percent}  }

                        \sf = \dfrac{ 600 \times 100 }{5}  }

                        \sf = \dfrac{ 60000 }{5}  }

                        \sf = 12000

Therefore, the whole quantity is 12000.

(b) 12% of it is 1080.

Given :

  • 12% of it is 1080

To find :

  • whole quantity

Solution :

{ \sf Whole \: Quantity = \dfrac{ (x \: of \:  x \%) \times 100 }{percent}  }

                        \sf = \dfrac{ 1080 \times 100 }{12}  }

                        \sf = \dfrac{ 108000 }{12}  }

                        \sf = 9000

Therefore, the whole quantity is 9000.

               

(c) 40% of it is 500 km.

Given :

  • 40% of it is 500.

To find :

  • whole quantity

Solution :

{ \sf Whole \: Quantity = \dfrac{ (x \: of \:  x \%) \times 100 }{percent}  }

                        \sf = \dfrac{ 500 \times 100 }{ 40}  }

                        \sf = \dfrac{ 50000 }{ 40}  }

                        \sf = 1250

Therefore, the whole quantity is 1250.

(d) 70% of it is 14 minutes.

Given :

  • 70% of it is 14 minutes.

To find :

  • whole quantity

Solution :

{ \sf Whole \: Quantity = \dfrac{ (x \: of \:  x \%) \times 100 }{percent}  }

                        \sf = \dfrac{ 14 \times 100 }{ 70}  }

                        \sf = \dfrac{ 1400 }{ 40}  }

                        \sf = 35 \: minutes

Therefore, the whole quantity is 35 minutes.

(e) 8% of it is 40 litres.

Given :

  • 8% of it is 40 minutes.

To find :

  • whole quantity

Solution :

{ \sf Whole \: Quantity = \dfrac{ (x \: of \:  x \%) \times 100 }{percent}  }

                        \sf = \dfrac{ 40 \times 100 }{ 8}  }

                        \sf = \dfrac{4000 }{ 8  }

                        \sf = 500 \: litres

Therefore, the whole quantity is 500 litres.

Similar questions