Physics, asked by llPuja1234567, 7 months ago

A capillary tube of uniform bore is dipped vertically in water, which rises by 7 cm in the tube find the radius of capillary if surface tension rises of water is 70 dyne/cm​

Answers

Answered by Anonymous
10

\;\;\underline{\textbf{\textsf{ Given:-}}}

• Rise in tube, h = 7 cm

= 7 × \sf 10^{-2}\;m

• Surface Tension, T = 70 dyne/cm

= 70 × \sf 10^{-3}\;N/m

\;\;\underline{\textbf{\textsf{ To Find :-}}} ⠀⠀⠀⠀⠀⠀⠀

• Radius of capillary tube, r

⠀⠀⠀⠀⠀⠀⠀

\;\;\underline{\textbf{\textsf{ Solution :-}}}

⠀⠀\underline{\:\textsf{ We know that :}}⠀⠀⠀⠀⠀

\;{\boxed{\sf{\purple{h = \dfrac{2T\;cos\;\theta}{rpg}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf Where,

• Density of water, p = 1 × \sf 10^{34} g/m³

• g = 9.8 m/s²

• Angle of constant, \sf \theta = 0⁰

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\:\textsf{ Now, put the given values in the formula   :}}⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

\;{\boxed{\sf{\purple{h = \dfrac{2T\;cos\;\theta}{rpg}}}}}

⠀⠀⠀⠀⠀⠀⠀

\dashrightarrow \sf 7 \times 10^{-2} = \dfrac{2 \times 70 \times 10^{-3} \times cos\;0^0}{r \times 1 \times 10^{34} \times 9.8}

⠀⠀⠀⠀⠀⠀⠀

\dashrightarrow \sf r = \dfrac{2 \times 70 \times 10^{-3} \times cos\;0^0}{7 \times 10^{-2} \times 1 \times 10^3 \times 9.8}

⠀⠀⠀⠀⠀⠀⠀

\dashrightarrow \sf r = 2 \times 10^{-4}\;m

⠀⠀⠀⠀⠀⠀⠀

\dashrightarrow \sf r = 0.2 \times 10^{-3}

⠀⠀⠀⠀⠀⠀⠀

\dashrightarrow {\underline{\boxed{\sf{\purple{0.2\;m}}}}}\\

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{ Radius of capillary tube is </p><p>\textbf{ 0.2m}}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀

Answered by BrainlyllHeroll
0

Explanation:

0.2 m is the answer........

Similar questions