Physics, asked by ebenmarady, 1 month ago

A car accelerates uniformly from 36 km/h to 72/h in 6 sec calculate the acceleration and the distance moved by the car in that time​

Answers

Answered by SparklingBoy
370

⇝ Given :-

  • A car accelerates from 36 km/h to 72 km/h in 6 second.

⇝ To Find :-

  • Acceleration of the Car.

  • Distance Traveled By the Car.

⇝ Solution :-

❒ Converting Velocities in m/s :

We Have,

\text{Initial Velocity = 36 km/h} \\

= \bigg(36 \times \frac{5}{18} \bigg) \text{m/s} \\

\red{:\longmapsto \text{Initial Velocity = 10 \: m/s}}

Also,

\text{Final Velocity = 72 km/h} \\

= \bigg(72 \times \frac{5}{18} \bigg) \text{m/s} \\

\red{:\longmapsto \text{Final Velocity = 20 \: m/s}}

Here,

  • Initial Velocity = u = 10 m/s

  • Final Velocity = v = 20 m/s

  • Time Taken = t = 6 s

1 》 Calculating Acceleration :-)

Let Acceleration of Car be = a m/s².

❒ We Have 1st Equation of Motion as :

\large \bf \red \bigstar \: \: \orange{ \underbrace{ \underline{v = u + at}}} \\

⏩ Applying 1st Equation of Motion ;

:\longmapsto 20 = 10 + \text a \times 6 \\

:\longmapsto6\text a = 20 - 10 \\

:\longmapsto6\text a = 10 \\

:\longmapsto\text a =  \frac{10}{6} \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf a = 1.67 \: m/s {}^{2} } }}}

Hence,

\large\underline{\pink{\underline{\frak{\pmb{\text Acceleration = 1.67 \: m/s {}^{2} }}}}}

2 》Calculating Distance Traveled :-)

❒ We Have 2nd Equation of Motion as :

\large \bf \red \bigstar \: \: \orange{ \underbrace{ \underline{s=ut+\dfrac{1}{2}at^2}}} \\

⏩ Applying 2nd Equation of Motion ;

:\longmapsto \text{s} = 10 \times 6 +  \frac{1}{2} \times  \frac{10}{6}  \times  {6}^{2}  \\

:\longmapsto\text{s} = 60 + 30 \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf s= 90 \: m} }}}

Hence,

\large\underline{\pink{\underline{\frak{\pmb{\text Distance \:\text Traveled = 90\: m }}}}}


rsagnik437: Excellent ! :D
Answered by Anonymous
350

Answer:

Given :-

  • A car accelerates uniformly from 36 km/h to 72 km/h in 6 seconds.

To Find :-

  • What is the acceleration.
  • What is the distance moved by the car in that time.

Formula Used :-

\clubsuit First Equation Of Motion Formula :

\mapsto \sf\boxed{\bold{\pink{v =\: u + at}}}

\clubsuit Second Equation Of Motion Formula :

\mapsto \sf\boxed{\bold{\pink{s =\: ut + \dfrac{1}{2}at^2}}}

where,

  • v = Final Velocity
  • u = Initial Velocity
  • a = Acceleration
  • t = Time Taken
  • s = Distance Covered

Solution :-

First, we have to convert the initial and final velocity km/h into m/s :

In case of Initial Velocity (u) :

\implies \sf Initial\: Velocity =\: 36\: km/h

\implies \sf Initial\: Velocity =\: 36 \times \dfrac{5}{18}\: m/s\: \bigg\lgroup \sf\bold{\pink{1\: km/h =\: \dfrac{5}{18}\: m/s}}\bigg\rgroup

\implies \sf Initial\: Velocity =\: \dfrac{180}{18}\: m/s

\implies \sf\bold{\purple{Initial\: Velocity =\: 10\: m/s}}

In case of Final Velocity (v) :

\implies \sf Final\: Velocity =\: 72\: km/h

\implies \sf Final\: Velocity =\: 72 \times \dfrac{5}{18}\: m/s\: \: \bigg\lgroup \sf\bold{\pink{1\: km/h =\: \dfrac{5}{18}\: m/s}}\bigg\rgroup

\implies \sf Final\: Velocity =\: \dfrac{360}{18}\: m/s

\implies \sf\bold{\purple{Final\: Velocity =\: 20\: m/s}}

Now, we have to find the acceleration of the car :

Given :

  • Final Velocity (v) = 20 m/s
  • Initial Velocity (u) = 10 m/s
  • Time Taken (t) = 6 seconds

According to the question by using the formula we get,

\longrightarrow \sf 20 =\: 10 + a(6)

\longrightarrow \sf 20 =\: 10 + 6a

\longrightarrow \sf 20 - 10 =\: 6a

\longrightarrow \sf 10 =\: 6a

\longrightarrow \sf \dfrac{\cancel{10}}{\cancel{6}} =\: a

\longrightarrow \sf 1.67 =\: a

\longrightarrow \sf\bold{\red{a =\: 1.67\: m/s^2}}

{\small{\bold{\underline{\therefore\: The\: acceleration\: of\: the\: car\: is\: 1.67\: m/s^2\: .}}}}

Now, we have to find the distance moved by the car in that time :

Given :

  • Initial Velocity (u) = 10 m/s
  • Time Taken (t) = 6 seconds
  • Acceleration (a) = 1.67 m/

According to the question by using the formula we get,

\longrightarrow \sf s =\: (10)(6) + \dfrac{1}{2} \times (1.67)(6)^2

\longrightarrow \sf s =\: 10 \times 6 + \dfrac{1}{2} \times 1.67 \times (6 \times 6)

\longrightarrow \sf s =\: 60 + \dfrac{1}{2} \times 1.67 \times 36

\longrightarrow \sf s =\: 60 + \dfrac{1}{2} \times 60.12

\longrightarrow \sf s =\: 60 + 30.06

\longrightarrow \sf s =\: 90.06

\longrightarrow \sf s \approx 90

\longrightarrow \sf\bold{\red{s =\: 90\: m}}

{\small{\bold{\underline{\therefore\: The\: distance\: moved\: by\: the\: car\: is\: 90\: m\: .}}}}

Similar questions