Physics, asked by nagarm84, 10 months ago

a car accelerates uniformlyfrom 18 kilometre per hour to 36 km per hour in 5 seconds calculate (i) the acceleration and(ii) the distance covered by the car in that time ​

Answers

Answered by BrainlyConqueror0901
26

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Acceleration=1\:m/s^{2}}}}

\green{\tt{\therefore{Distance\:covered=37.5\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:\implies Initial \: velocity(u) = 18 \: km/h \\  \\ \tt:\implies Final\: velocity(v) = 36\: km/h \\  \\ \tt:\implies Time = 5\: sec \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Acceleration(a) =  ?\\  \\ \tt:  \implies Distance \: travel(s) =?

• According to given question :

 \tt \circ  \: u = 18 \times  \frac{5}{18} = 5 \: m/s \\  \\  \tt \circ \: v = 36 \times  \frac{5}{18}    = 10 \: m/s\\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies v = u + at \\  \\ \tt:  \implies 10 = 5 + a \times 5 \\  \\ \tt:  \implies 10 - 5 = a \times 5 \\  \\ \tt:  \implies a =  \frac{5}{5}  \\  \\  \green{\tt:  \implies a = 1 \:  {m/s}^{2} } \\  \\  \bold{As \: we \: know \: that } \\ \tt:  \implies s = ut +  \frac{1}{2} {at}^{2}  \\  \\ \tt:  \implies s = 5 \times 5 +  \frac{1}{2}  \times 1 \times  {5}^{2}  \\  \\ \tt:  \implies s = 25 + 12.5 \\  \\  \green{\tt:  \implies s = 37.5 \: m}

Answered by Saby123
46

Correct Question :

A car accelerates uniformly from 18 kilometre per hour to 36 km per hour in 5 seconds .

Calculate :

(i) the acceleration .

(ii) the distance covered by the car in that time .

Solution -

In the above Question , the following information is given -

A car accelerates uniformly from 18 kilometre per hour to 36 km per hour in 5 seconds .

So , the innitial Velocity , u of the car -

=> 18 kmph

=> 18 × ( 5 / 18 ) m / s

=> 5 m / s.

Hence ,

U = 5 m/s.

The final Velocity , V of the car -

=> 36 kmph

=> 36 × ( 5 / 18 ) m / s

=> 5 × 2 m / s

=> 10 m / s.

Hence V = 10 m / s.

Time = 5 Seconds

According to the first Equation if motion ,

Acceleration = [ v - u ] / t

=> 1 m / s

According to the second Equation if Motion ,

S = ut + ( 1 / 2 ) a t^2

=> S = 25 + ( 1 / 2 ) × 25

=> S = 75 / 2

=> S = 37.5 m

Similar questions