Math, asked by hajsjjshejskks, 6 months ago

A car is crossing a road-turn with a speed of 10 metre/
second. If the coefficient of friction be 0.5, then the
radius of the turn of the car is (g = 10 m/s):
(a) 20 metre
(b) 10 metre
(c) 5 metre
(d) 2 metre​

Answers

Answered by Anonymous
20

\underline{\underline{\sf{\color{orange}{GIVEN:-}}}}

A car is crossing a road-turn with a speed, v = 10 m/s

The coefficient of friction, μ = 0.5

Acceleration due to gravity, g = 10 m/s²

\underline{\underline{\sf{\color{orange}{TO\ DETERMINE:-}}}}

The radius of the turn(R) of the car.

\underline{\underline{\sf{\color{orange}{SOLUTION:-}}}}

We know,

\boxed{\bf{v=\sqrt{\mu Rg} }}

Solving further by substituting values :-

\sf{\longmapsto 10=\sqrt{\mu Rg} }

\sf{\longmapsto 10=\sqrt{0.5 \times R \times 10} }

\sf{\longmapsto 10=\sqrt{5R} }

\sf{\longmapsto (10)^2=(\sqrt{5R})^2}

\sf{\longmapsto 100=5R}

\sf{\longmapsto R=\dfrac{100}{5}}

\sf{\longmapsto R=20\ m}

∴ The radius of the turn of the car is 20 m.

The answer is (a) 20 meter.

Answered by alevens9590
0

Answer:

?

Step-by-step explanation:

Similar questions