Physics, asked by karan1naik0, 9 months ago

A car moving on a straight road at 18 km /hr increase its velocity to 54 km / hr at a uniform rate in 10 s . Find the acceleration and distance moved in that tie .( hint-convert km /hr into m/sec first )
Initial speed u =18 km /hr =18000 m/ 36000 s =5 m / s
final speed v = 544 km/ hr = _______=_______

(i) Acceleration,a=______________=_________
(ii) Displacement,s=________________=_________________=________________

Answers

Answered by BrainlyConqueror0901
47

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Acceleration=1\:m/s^{2}}}}

\green{\tt{\therefore{Distance=100\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies Initial\:velocity(u) = 18 \: km/{h} \\  \\  \tt:  \implies Final \: velocity(v) = 54 \: km/h\\\\ \tt:\implies Time(t)=10\:sec\\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Acceleration(a) = ? \\  \\ \tt:  \implies Distance(s) = ?

• According to given question :

 \tt \circ \: Initial \: velocity = 18\times \frac{5}{18}=5 \: m/s \\\\ \tt \circ \: Final \: velocity = 54\times \frac{5}{18}=15 \: m/s \\  \\ \bold{As \: we \: know \: that} \\  \tt:  \implies v = u + at \\  \\ \tt:  \implies 15 = 5 + a \times 10 \\  \\ \tt:  \implies 15-5 = a \times 10 \\  \\ \tt:  \implies t =  \frac{10}{10}  \\  \\  \green{\tt:  \implies a=1 \:m/s^{2}} \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies s = ut +  \frac{1}{2}  {at}^{2}  \\  \\ \tt:  \implies s = 5 \times 10 +  \frac{1}{2}  \times 1 \times  {10}^{2}  \\  \\ \tt:  \implies s = 50 +  50 \\  \\  \green{\tt:  \implies s = 100 \: m}

Answered by AdorableMe
36

Given :-

\texttt{Initial velocity(u) = 18 km/h = 5 m/s}\\\\\texttt{Final velocity(v) = 54 km/h = 54}*\tt{\frac{5}{18}}\texttt{  = 15 m/s}\\\\\texttt{Time(t) = 10 s}

To find :-

\texttt{The acceleration  of the car and distance}\\\texttt{travelled by it.}

Solution :-

\text{We know :}

\tt{v=u+at}

\text{Putting the known values :}

\tt{15=5+a(10)}\\\\\tt{\implies 15=5+10a}\\\\\tt{\implies 10=10a}\\\\\boxed{\tt{\implies a=1\ m/s^2}}

\text{We also know that,}

\tt{s=ut+\frac{1}{2}at^2 }

\text{Putting the known values :}

\tt{s=5*10+\frac{1}{2}*1*(10)^2 }\\\\\tt{\implies s=50+\frac{100}{2} }\\\\\tt{\implies s=50+50}\\\\\tt{\boxed{\implies s= 100\ m}}

Similar questions