Physics, asked by Vishalagni7448, 1 year ago

A car travels[1/4]th of circle of radius r.find the ratio of the distance to its displacement

Answers

Answered by GOZMIt
6
heyy--------

#...
distance = (2πr)/4 = πr/2 units
displacement = √[(r)²+(r)²] = √2r² = r√2 units
ratio of distance to displacement = (πr/2)/(r√2)
                                                         = π/2√2.....#

tysm..........@kundan
Answered by Theopekaaleader
1

Explanation:

\begin{gathered}\dashrightarrow\sf\:\:(Diagonal)^2=(Length)^2+(Breadth)^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=(BC)^2+(CD)^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=(24\:cm)^2+(7\:cm)^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=576\:cm^2+49\:cm^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=625\:cm^2\\\\\\\dashrightarrow\sf\:\:BD=\sqrt{625\:cm^2}\\\\\\\dashrightarrow\sf\:\:BD=\sqrt{25\:cm \times 25\:cm}\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf BD=25\:cm}}\qquad\bigg\lgroup\bf Diagonal\bigg\rgroup\end{gathered}

⇢(Diagonal)

2

=(Length)

2

+(Breadth)

2

⇢(BD)

2

=(BC)

2

+(CD)

2

⇢(BD)

2

=(24cm)

2

+(7cm)

2

⇢(BD)

2

=576cm

2

+49cm

2

⇢(BD)

2

=625cm

2

⇢BD=

625cm

2

⇢BD=

25cm×25cm

BD=25cm

Diagonal

\therefore\:\underline{\textsf{Hence, Length of Diagonal is C) \textbf{25 cm}}}.∴

Hence, Length of Diagonal is C) 25 cm

.\bold{ANSWER : }\bold{ANSWER : }\bold{ANSWER : }\bold{ANSWER : }\bold{ANSWER : }\bold{ANSWER : }\bold{ANSWER : }

Similar questions