A car travels[1/4]th of circle of radius r.find the ratio of the distance to its displacement
Answers
#...distance = (2πr)/4 = πr/2 units
displacement = √[(r)²+(r)²] = √2r² = r√2 units
ratio of distance to displacement = (πr/2)/(r√2)
= π/2√2.....#
tysm..........@kundan
Explanation:
\begin{gathered}\dashrightarrow\sf\:\:(Diagonal)^2=(Length)^2+(Breadth)^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=(BC)^2+(CD)^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=(24\:cm)^2+(7\:cm)^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=576\:cm^2+49\:cm^2\\\\\\\dashrightarrow\sf\:\:(BD)^2=625\:cm^2\\\\\\\dashrightarrow\sf\:\:BD=\sqrt{625\:cm^2}\\\\\\\dashrightarrow\sf\:\:BD=\sqrt{25\:cm \times 25\:cm}\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf BD=25\:cm}}\qquad\bigg\lgroup\bf Diagonal\bigg\rgroup\end{gathered}
⇢(Diagonal)
2
=(Length)
2
+(Breadth)
2
⇢(BD)
2
=(BC)
2
+(CD)
2
⇢(BD)
2
=(24cm)
2
+(7cm)
2
⇢(BD)
2
=576cm
2
+49cm
2
⇢(BD)
2
=625cm
2
⇢BD=
625cm
2
⇢BD=
25cm×25cm
⇢
BD=25cm
⎩
⎪
⎪
⎪
⎧
Diagonal
⎭
⎪
⎪
⎪
⎫
⠀
\therefore\:\underline{\textsf{Hence, Length of Diagonal is C) \textbf{25 cm}}}.∴
Hence, Length of Diagonal is C) 25 cm
.