Physics, asked by Anonymous, 7 days ago

A car was travelling at a speed of 10 m/s. After the brakes were applied, it start to decelerate at a rate of 2 m/s ² and finally came to rest. Find the distance traveled by the car before coming to rest.
 \ \  \:

No spam :))​

Answers

Answered by Anonymous
11

Initial speed of the car   u=10 m/s

Initial speed of the car   u=10 m/sFinal speed of the car   v=0 m/s

Initial speed of the car   u=10 m/sFinal speed of the car   v=0 m/sAcceleration (or  retardation) of the car   a=−2 m/s

Initial speed of the car   u=10 m/sFinal speed of the car   v=0 m/sAcceleration (or  retardation) of the car   a=−2 m/sUsing   v^2−u^2=2aS

Initial speed of the car   u=10 m/sFinal speed of the car   v=0 m/sAcceleration (or  retardation) of the car   a=−2 m/sUsing   v^2−u^2=2aS∴   0−10^2=2(−2)S

 \sf⟹ S= \dfrac{100}{2 \times 2}=25 m</p><p>

Answered by Anonymous
125

 \star \; {\underline{\boxed{\pmb{\green{\frak{ \; Given \; :- }}}}}}

  • Initial Velocity = 10 m/s
  • Acceleration = 2 m/s²

 \\ \\

 \star \; {\underline{\boxed{\pmb{\pink{\frak{ \; To \; Find \; :- }}}}}}

  • Distance Covered = ?

 \\ \\

 \star \; {\underline{\boxed{\pmb{\red{\frak{ \; SolutioN \; :- }}}}}}

 \dag Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ {v}^{2} - {u}^{2} = 2as }}}}}

Where :

  • v = Final Velocity
  • u = Initial Velocity
  • a = Acceleration
  • s = Distance Covered

 \\ \qquad{\rule{150pt}{2pt}}

 \dag Calculating the Distance Covered :

 {\dashrightarrow{\qquad{\sf{ {v}^{2} - {u}^{2} = 2as }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ {0}^{2} - {10}^{2} = 2 \times ( - 2 ) \times s }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 0 - 100 = - 4 \times s }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ \cancel{-} 100 = \cancel{-} 4 \times s }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 100 = 4 \times s }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ \dfrac{100}{4} = s }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ \cancel\dfrac{100}{4} = s }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\pmb{\purple{\sf{ Distance \; Covered = 25 \; m }}}}}}}}

 \\ \qquad{\rule{150pt}{2pt}}

 \dag Therefore :

❛❛ Car travelled 25 m before coming to rest . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions